This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367093 #16 Nov 18 2023 13:12:45 %S A367093 1,90,630,2310,6930,34650,30030,90090,450450,570570,510510,1531530, %T A367093 7657650,14804790,11741730,9699690,29099070,145495350 %N A367093 Least positive integer with n more semiprime divisors than semi-sums of prime indices. %C A367093 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367093 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %C A367093 Are all primorials after 210 included? %F A367093 a(n) is the least positive integer such that A086971(a(n)) - A366739(a(n)) = n. %e A367093 The terms together with their prime indices begin: %e A367093 1: {} %e A367093 90: {1,2,2,3} %e A367093 630: {1,2,2,3,4} %e A367093 2310: {1,2,3,4,5} %e A367093 6930: {1,2,2,3,4,5} %e A367093 34650: {1,2,2,3,3,4,5} %e A367093 30030: {1,2,3,4,5,6} %e A367093 90090: {1,2,2,3,4,5,6} %e A367093 450450: {1,2,2,3,3,4,5,6} %e A367093 570570: {1,2,3,4,5,6,8} %e A367093 510510: {1,2,3,4,5,6,7} %t A367093 nn=10000; %t A367093 w=Table[Length[Union[Subsets[prix[n],{2}]]]-Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}]; %t A367093 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; %t A367093 Table[Position[w,k][[1,1]],{k,0,spnm[w]}] %o A367093 (Python) %o A367093 from itertools import count %o A367093 from sympy import factorint, primepi %o A367093 from sympy.utilities.iterables import multiset_combinations %o A367093 def A367093(n): %o A367093 for k in count(1): %o A367093 c, a = 0, set() %o A367093 for s in (sum(p) for p in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)): %o A367093 if s not in a: %o A367093 a.add(s) %o A367093 else: %o A367093 c += 1 %o A367093 if c > n: %o A367093 break %o A367093 if c == n: %o A367093 return k # _Chai Wah Wu_, Nov 13 2023 %Y A367093 The first part (semiprime divisors) is A086971, firsts A220264. %Y A367093 The second part (semi-sums of prime indices) is A366739, firsts A367097. %Y A367093 All sums of pairs of prime indices are counted by A367095. %Y A367093 The non-binary version is A367105. %Y A367093 A001222 counts prime factors (or prime indices), distinct A001221. %Y A367093 A001358 lists semiprimes, squarefree A006881, conjugate A065119. %Y A367093 A056239 adds up prime indices, row sums of A112798. %Y A367093 A299701 counts subset-sums of prime indices, positive A304793. %Y A367093 Semiprime divisors are listed by A367096 and have: %Y A367093 - square count: A056170 %Y A367093 - sum: A076290 %Y A367093 - squarefree count: A079275 %Y A367093 - count: A086971 %Y A367093 - firsts: A220264 %Y A367093 Cf. A000720, A001248, A008967, A117855, A304792, A365541, A365920, A366738, A366740, A366753. %K A367093 nonn,more %O A367093 0,2 %A A367093 _Gus Wiseman_, Nov 05 2023 %E A367093 a(12)-a(16) from _Chai Wah Wu_, Nov 13 2023 %E A367093 a(17) from _Chai Wah Wu_, Nov 18 2023