cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

This page as a plain text file.
%I A367094 #6 Nov 08 2023 10:45:15
%S A367094 0,1,1,1,2,2,1,5,3,3,8,4,9,1,17,6,16,1,2,24,7,33,4,9,46,11,52,3,18,1,
%T A367094 4,64,12,91,6,38,3,15,1,1,107,17,138,9,68,2,28,2,12,0,2,147,19,219,12,
%U A367094 117,6,56,3,34,2,9,0,3
%N A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.
%F A367094 T(n,1) = A108917(n).
%e A367094 The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
%e A367094 The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
%e A367094 Triangle begins:
%e A367094     0   1
%e A367094     1   1
%e A367094     2   2   1
%e A367094     5   3   3
%e A367094     8   4   9   1
%e A367094    17   6  16   1   2
%e A367094    24   7  33   4   9
%e A367094    46  11  52   3  18   1   4
%e A367094    64  12  91   6  38   3  15   1   1
%e A367094   107  17 138   9  68   2  28   2  12   0   2
%e A367094   147  19 219  12 117   6  56   3  34   2   9   0   3
%e A367094 Row n = 4 counts the following partitions:
%e A367094   (8)     (44)        (431)      (221111)
%e A367094   (71)    (3311)      (422)
%e A367094   (62)    (2222)      (4211)
%e A367094   (611)   (11111111)  (41111)
%e A367094   (53)                (3221)
%e A367094   (521)               (32111)
%e A367094   (5111)              (311111)
%e A367094   (332)               (22211)
%e A367094                       (2111111)
%t A367094 t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
%t A367094 Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]
%Y A367094 Row sums w/o the first column are A002219, ranks A357976, strict A237258.
%Y A367094 Column k = 0 is A006827.
%Y A367094 Row sums are A058696.
%Y A367094 Column k = 1 is A108917.
%Y A367094 The corresponding rank statistic is A357879 (without empty rows).
%Y A367094 A000041 counts integer partitions, strict A000009.
%Y A367094 A182616 counts partitions of 2n that do not contain n, ranks A366321.
%Y A367094 A182616 counts partitions of 2n with at least one odd part, ranks A366530.
%Y A367094 A276024 counts positive subset-sums of partitions, strict A284640.
%Y A367094 A304792 counts subset-sums of partitions, rank statistic A299701.
%Y A367094 A365543 counts partitions of n with a submultiset summing to k.
%Y A367094 Cf. A046663, A064914, A079122, A122768, A213074, A231429, A235130, A237194.
%K A367094 nonn,tabf
%O A367094 0,5
%A A367094 _Gus Wiseman_, Nov 07 2023