This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367094 #6 Nov 08 2023 10:45:15 %S A367094 0,1,1,1,2,2,1,5,3,3,8,4,9,1,17,6,16,1,2,24,7,33,4,9,46,11,52,3,18,1, %T A367094 4,64,12,91,6,38,3,15,1,1,107,17,138,9,68,2,28,2,12,0,2,147,19,219,12, %U A367094 117,6,56,3,34,2,9,0,3 %N A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k. %F A367094 T(n,1) = A108917(n). %e A367094 The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2). %e A367094 The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3). %e A367094 Triangle begins: %e A367094 0 1 %e A367094 1 1 %e A367094 2 2 1 %e A367094 5 3 3 %e A367094 8 4 9 1 %e A367094 17 6 16 1 2 %e A367094 24 7 33 4 9 %e A367094 46 11 52 3 18 1 4 %e A367094 64 12 91 6 38 3 15 1 1 %e A367094 107 17 138 9 68 2 28 2 12 0 2 %e A367094 147 19 219 12 117 6 56 3 34 2 9 0 3 %e A367094 Row n = 4 counts the following partitions: %e A367094 (8) (44) (431) (221111) %e A367094 (71) (3311) (422) %e A367094 (62) (2222) (4211) %e A367094 (611) (11111111) (41111) %e A367094 (53) (3221) %e A367094 (521) (32111) %e A367094 (5111) (311111) %e A367094 (332) (22211) %e A367094 (2111111) %t A367094 t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}]; %t A367094 Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}] %Y A367094 Row sums w/o the first column are A002219, ranks A357976, strict A237258. %Y A367094 Column k = 0 is A006827. %Y A367094 Row sums are A058696. %Y A367094 Column k = 1 is A108917. %Y A367094 The corresponding rank statistic is A357879 (without empty rows). %Y A367094 A000041 counts integer partitions, strict A000009. %Y A367094 A182616 counts partitions of 2n that do not contain n, ranks A366321. %Y A367094 A182616 counts partitions of 2n with at least one odd part, ranks A366530. %Y A367094 A276024 counts positive subset-sums of partitions, strict A284640. %Y A367094 A304792 counts subset-sums of partitions, rank statistic A299701. %Y A367094 A365543 counts partitions of n with a submultiset summing to k. %Y A367094 Cf. A046663, A064914, A079122, A122768, A213074, A231429, A235130, A237194. %K A367094 nonn,tabf %O A367094 0,5 %A A367094 _Gus Wiseman_, Nov 07 2023