cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367095 Number of distinct sums of pairs (repeats allowed) of prime indices of n.

This page as a plain text file.
%I A367095 #14 Jan 20 2025 10:41:12
%S A367095 0,1,1,1,1,3,1,1,1,3,1,3,1,3,3,1,1,3,1,3,3,3,1,3,1,3,1,3,1,5,1,1,3,3,
%T A367095 3,3,1,3,3,3,1,6,1,3,3,3,1,3,1,3,3,3,1,3,3,3,3,3,1,5,1,3,3,1,3,6,1,3,
%U A367095 3,6,1,3,1,3,3,3,3,6,1,3,1,3,1,6,3,3,3,3,1,5,3,3,3,3,3,3,1,3,3,3,1,6,1,3,5
%N A367095 Number of distinct sums of pairs (repeats allowed) of prime indices of n.
%C A367095 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A367095 Is the image missing only 2 and 4?
%H A367095 Antti Karttunen, <a href="/A367095/b367095.txt">Table of n, a(n) for n = 1..65537</a>
%H A367095 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%e A367095 The prime indices of 15 are {2,3}, with sums of pairs:
%e A367095   2+2 = 4
%e A367095   2+3 = 5
%e A367095   3+3 = 6
%e A367095 so a(15) = 3.
%e A367095 The prime indices of 180 are {1,1,2,2,3}, with sums of pairs:
%e A367095   1+1 = 2
%e A367095   1+2 = 3
%e A367095   1+3 = 4
%e A367095   2+2 = 4
%e A367095   2+3 = 5
%e A367095   3+3 = 6
%e A367095 so a(180) = 5.
%t A367095 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A367095 Table[Length[Union[Total/@Tuples[prix[n],2]]],{n,100}]
%o A367095 (PARI) A367095(n) = if(1==n, 0, my(pis=apply(primepi,factor(n)[,1]), pairsums = vector(binomial(1+#pis,2)), k=0); for(i=1,#pis,for(j=i,#pis,k++; pairsums[k] = pis[i]+pis[j])); #Set(pairsums)); \\ _Antti Karttunen_, Jan 20 2025
%Y A367095 Depends only on squarefree kernel A007947. (Even more exactly, on A322591 - _Antti Karttunen_, Jan 20 2025)
%Y A367095 Positions of first appearances appear to be a subset of A325986.
%Y A367095 For 2-element submultisets we have A366739, for all submultisets A299701.
%Y A367095 A001222 counts prime factors (also indices), distinct A001221.
%Y A367095 A001358 lists semiprimes, squarefree A006881, conjugate A065119.
%Y A367095 A056239 adds up prime indices, row sums of A112798.
%Y A367095 A304793 counts positive subset-sums of prime indices.
%Y A367095 A367096 lists semiprime divisors, count A086971.
%Y A367095 Cf. A001248, A004526, A008967, A366737, A366738, A366740, A367093, A367097.
%K A367095 nonn
%O A367095 1,6
%A A367095 _Gus Wiseman_, Nov 06 2023
%E A367095 Data section extended to a(105) by _Antti Karttunen_, Jan 20 2025