This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367096 #9 May 02 2025 03:31:39 %S A367096 4,6,4,9,10,4,6,14,15,4,6,9,4,10,21,22,4,6,25,26,9,4,14,6,10,15,4,33, %T A367096 34,35,4,6,9,38,39,4,10,6,14,21,4,22,9,15,46,4,6,49,10,25,51,4,26,6,9, %U A367096 55,4,14,57,58,4,6,10,15,62,9,21,4,65,6,22,33,4,34 %N A367096 Irregular triangle read by rows where row n lists the semiprime divisors of n. Alternatively, row n lists the semiprime divisors of A002808(n). %C A367096 On the first interpretation, the first three rows are empty. On the second, the first row is (4). %e A367096 The semiprime divisors of 30 are {6,10,15}, so row 30 is (6,10,15). Without empty rows, this is row 19. %e A367096 Triangle begins (empty rows indicated by dots): %e A367096 1: . %e A367096 2: . %e A367096 3: . %e A367096 4: 4 %e A367096 5: . %e A367096 6: 6 %e A367096 7: . %e A367096 8: 4 %e A367096 9: 9 %e A367096 10: 10 %e A367096 11: . %e A367096 12: 4,6 %e A367096 Without empty rows: %e A367096 1: 4 %e A367096 2: 6 %e A367096 3: 4 %e A367096 4: 9 %e A367096 5: 10 %e A367096 6: 4,6 %e A367096 7: 14 %e A367096 8: 15 %e A367096 9: 4 %e A367096 10: 6,9 %e A367096 11: 4,10 %e A367096 12: 21 %t A367096 Table[Select[Divisors[n],PrimeOmega[#]==2&],{n,100}] %o A367096 (PARI) row(n) = select(x -> bigomega(x) == 2, divisors(n)); \\ _Amiram Eldar_, May 02 2025 %Y A367096 For all divisors we have A027750. %Y A367096 Square terms are counted by A056170. %Y A367096 Row sums are A076290. %Y A367096 Squarefree terms are counted by A079275. %Y A367096 Row lengths are A086971, firsts A220264. %Y A367096 A000005 counts divisors. %Y A367096 A001222 counts prime factors (or prime indices), distinct A001221. %Y A367096 A001358 lists semiprimes, squarefree A006881, complement A100959. %Y A367096 Cf. A008967, A365829, A366738, A366739, A366740, A367093, A367098. %K A367096 nonn,tabf %O A367096 1,1 %A A367096 _Gus Wiseman_, Nov 08 2023