This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367097 #28 Nov 20 2023 11:53:55 %S A367097 1,4,12,30,60,210,330,660,2730,3570,6270,12540,53130,79170,110670, %T A367097 221340,514140,1799490,2284590,4196010,6750870,13501740,37532220, %U A367097 97350330,131362770,189620970,379241940,735844830,1471689660 %N A367097 Least positive integer whose multiset of prime indices has exactly n distinct semi-sums. %C A367097 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367097 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %C A367097 From _David A. Corneth_, Nov 15 2023: (Start) %C A367097 Terms are cubefree. %C A367097 bigomega(a(n)) = A001222(a(n)) >= A002024(n) + 1 = floor(sqrt(2n) + 1/2) + 1 for n > 0. (End) %F A367097 2 | a(n) for n > 0. - _David A. Corneth_, Nov 13 2023 %e A367097 The prime indices of 60 are {1,1,2,3}, with four semi-sums {2,3,4,5}, and 60 is the first number whose prime indices have four semi-sums, so a(4) = 60. %e A367097 The terms together with their prime indices begin: %e A367097 1: {} %e A367097 4: {1,1} %e A367097 12: {1,1,2} %e A367097 30: {1,2,3} %e A367097 60: {1,1,2,3} %e A367097 210: {1,2,3,4} %e A367097 330: {1,2,3,5} %e A367097 660: {1,1,2,3,5} %e A367097 2730: {1,2,3,4,6} %e A367097 3570: {1,2,3,4,7} %e A367097 6270: {1,2,3,5,8} %e A367097 12540: {1,1,2,3,5,8} %e A367097 53130: {1,2,3,4,5,9} %e A367097 79170: {1,2,3,4,6,10} %e A367097 110670: {1,2,3,4,7,11} %e A367097 221340: {1,1,2,3,4,7,11} %e A367097 514140: {1,1,2,3,5,8,13} %t A367097 nn=1000; %t A367097 w=Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}]; %t A367097 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; %t A367097 v=Table[Position[w,k][[1,1]],{k,0,spnm[w]}] %o A367097 (Python) %o A367097 from itertools import count %o A367097 from sympy import factorint, primepi %o A367097 from sympy.utilities.iterables import multiset_combinations %o A367097 def A367097(n): return next(k for k in count(1) if len({sum(s) for s in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)}) == n) # _Chai Wah Wu_, Nov 13 2023 %Y A367097 The non-binary version is A259941, firsts of A299701. %Y A367097 These are the positions of first appearances in A366739. %Y A367097 A001222 counts prime factors (or prime indices), distinct A001221. %Y A367097 A001358 lists semiprimes, squarefree A006881, complement A100959. %Y A367097 A056239 adds up prime indices, row sums of A112798. %Y A367097 A299702 ranks knapsack partitions, counted by A108917. %Y A367097 A366738 counts semi-sums of partitions, strict A366741. %Y A367097 Semiprime divisors are listed by A367096 and have: %Y A367097 - square count: A056170 %Y A367097 - sum: A076290 %Y A367097 - squarefree count: A079275 %Y A367097 - count: A086971 %Y A367097 - firsts: A220264 %Y A367097 Cf. A000720, A001248, A002024, A004709, A304793, A365920, A366740, A366753, A367093, A367095. %K A367097 nonn,more %O A367097 0,2 %A A367097 _Gus Wiseman_, Nov 09 2023 %E A367097 a(17)-a(22) from _Chai Wah Wu_, Nov 13 2023 %E A367097 a(23)-a(28) from _David A. Corneth_, Nov 13 2023