This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367098 #13 Jan 08 2024 01:40:26 %S A367098 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,2,0,2,1,1,0,3,0,1,0,2,0,3,0,0,1,1, %T A367098 1,4,0,1,1,3,0,3,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,5,0,1,2,0,1,3,0,2, %U A367098 1,3,0,6,0,1,2,2,1,3,0,4,0,1,0,5,1,1,1 %N A367098 Number of divisors of n with exactly two distinct prime factors. %H A367098 Amiram Eldar, <a href="/A367098/b367098.txt">Table of n, a(n) for n = 1..10000</a> %F A367098 a(n) = (A001222(n)^2 - A090885(n))/2. - _Amiram Eldar_, Jan 08 2024 %e A367098 The a(n) divisors for n = 1, 6, 12, 24, 36, 60, 72, 120, 144, 216, 288, 360: %e A367098 . 6 6 6 6 6 6 6 6 6 6 6 %e A367098 12 12 12 10 12 10 12 12 12 10 %e A367098 24 18 12 18 12 18 18 18 12 %e A367098 36 15 24 15 24 24 24 15 %e A367098 20 36 20 36 36 36 18 %e A367098 72 24 48 54 48 20 %e A367098 40 72 72 72 24 %e A367098 144 108 96 36 %e A367098 216 144 40 %e A367098 288 45 %e A367098 72 %t A367098 Table[Length[Select[Divisors[n], PrimeNu[#]==2&]],{n,100}] %t A367098 a[1] = 0; a[n_] := (Total[(e = FactorInteger[n][[;; , 2]])]^2 - Total[e^2])/2; Array[a, 100] (* _Amiram Eldar_, Jan 08 2024 *) %o A367098 (PARI) a(n) = {my(e = factor(n)[, 2]); (vecsum(e)^2 - e~*e)/2;} \\ _Amiram Eldar_, Jan 08 2024 %Y A367098 For just one distinct prime factor we have A001222 (prime-power divisors). %Y A367098 This sequence counts divisors belonging to A007774. %Y A367098 Counting all prime factors gives A086971, firsts A220264. %Y A367098 Column k = 2 of A146289. %Y A367098 - Positions of zeros are A000961 (powers of primes), complement A024619. %Y A367098 - Positions of ones are A006881 (squarefree semiprimes). %Y A367098 - Positions of twos are A054753. %Y A367098 - Positions of first appearances are A367099. %Y A367098 A001221 counts distinct prime factors. %Y A367098 A001358 lists semiprimes, complement A100959. %Y A367098 A367096 lists semiprime divisors, sum A076290. %Y A367098 Cf. A000005, A001248, A056170, A079275, A090885, A366740. %K A367098 nonn,easy %O A367098 1,12 %A A367098 _Gus Wiseman_, Nov 09 2023