This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367099 #18 Jan 08 2024 01:35:29 %S A367099 1,6,12,24,36,60,72,120,144,216,288,360,432,960,720,864,1296,1440, %T A367099 1728,2160,2592,3456,7560,4320,5184,7776,10800,8640,10368,12960,15552, %U A367099 17280,20736,40320,25920,31104,41472,60480,64800,51840,62208,77760,93312 %N A367099 Least positive integer such that the number of divisors having two distinct prime factors is n. %C A367099 Does this contain every power of six, namely 1, 6, 36, 216, 1296, 7776, ...? %C A367099 Yes, every power of six is a term, since 6^k = 2^k * 3^k is the least positive integer having n = tau(6^k) - (2k+1) divisors with two distinct prime factors. - _Ivan N. Ianakiev_, Nov 11 2023 %H A367099 Amiram Eldar, <a href="/A367099/b367099.txt">Table of n, a(n) for n = 0..4469</a> %e A367099 The divisors of 60 having two distinct prime factors are: 6, 10, 12, 15, 20. Since 60 is the first number having five such divisors, we have a(5) = 60. %e A367099 The terms together with their prime indices begin: %e A367099 1: {} %e A367099 6: {1,2} %e A367099 12: {1,1,2} %e A367099 24: {1,1,1,2} %e A367099 36: {1,1,2,2} %e A367099 60: {1,1,2,3} %e A367099 72: {1,1,1,2,2} %e A367099 120: {1,1,1,2,3} %e A367099 144: {1,1,1,1,2,2} %e A367099 216: {1,1,1,2,2,2} %e A367099 288: {1,1,1,1,1,2,2} %e A367099 360: {1,1,1,2,2,3} %e A367099 432: {1,1,1,1,2,2,2} %e A367099 960: {1,1,1,1,1,1,2,3} %e A367099 720: {1,1,1,1,2,2,3} %e A367099 864: {1,1,1,1,1,2,2,2} %t A367099 nn=1000; %t A367099 w=Table[Length[Select[Divisors[n],PrimeNu[#]==2&]],{n,nn}]; %t A367099 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; %t A367099 Table[Position[w,k][[1,1]],{k,0,spnm[w]}] %o A367099 (PARI) a(n) = my(k=1); while (sumdiv(k, d, omega(d)==2) != n, k++); k; \\ _Michel Marcus_, Nov 11 2023 %Y A367099 The version for all divisors is A005179 (firsts of A000005). %Y A367099 For all prime factors (A001222) we have A220264, firsts of A086971. %Y A367099 Positions of first appearances in A367098 (counts divisors in A007774). %Y A367099 A000961 lists prime powers, complement A024619. %Y A367099 A001221 counts distinct prime factors. %Y A367099 A001358 lists semiprimes, squarefree A006881, complement A100959. %Y A367099 A367096 lists semiprime divisors, sum A076290. %Y A367099 Cf. A001248, A054753, A056170, A079275, A146289, A366740, A367093. %K A367099 nonn %O A367099 0,2 %A A367099 _Gus Wiseman_, Nov 09 2023