cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367099 Least positive integer such that the number of divisors having two distinct prime factors is n.

This page as a plain text file.
%I A367099 #18 Jan 08 2024 01:35:29
%S A367099 1,6,12,24,36,60,72,120,144,216,288,360,432,960,720,864,1296,1440,
%T A367099 1728,2160,2592,3456,7560,4320,5184,7776,10800,8640,10368,12960,15552,
%U A367099 17280,20736,40320,25920,31104,41472,60480,64800,51840,62208,77760,93312
%N A367099 Least positive integer such that the number of divisors having two distinct prime factors is n.
%C A367099 Does this contain every power of six, namely 1, 6, 36, 216, 1296, 7776, ...?
%C A367099 Yes, every power of six is a term, since 6^k = 2^k * 3^k is the least positive integer having n = tau(6^k) - (2k+1) divisors with two distinct prime factors. - _Ivan N. Ianakiev_, Nov 11 2023
%H A367099 Amiram Eldar, <a href="/A367099/b367099.txt">Table of n, a(n) for n = 0..4469</a>
%e A367099 The divisors of 60 having two distinct prime factors are: 6, 10, 12, 15, 20. Since 60 is the first number having five such divisors, we have a(5) = 60.
%e A367099 The terms together with their prime indices begin:
%e A367099      1: {}
%e A367099      6: {1,2}
%e A367099     12: {1,1,2}
%e A367099     24: {1,1,1,2}
%e A367099     36: {1,1,2,2}
%e A367099     60: {1,1,2,3}
%e A367099     72: {1,1,1,2,2}
%e A367099    120: {1,1,1,2,3}
%e A367099    144: {1,1,1,1,2,2}
%e A367099    216: {1,1,1,2,2,2}
%e A367099    288: {1,1,1,1,1,2,2}
%e A367099    360: {1,1,1,2,2,3}
%e A367099    432: {1,1,1,1,2,2,2}
%e A367099    960: {1,1,1,1,1,1,2,3}
%e A367099    720: {1,1,1,1,2,2,3}
%e A367099    864: {1,1,1,1,1,2,2,2}
%t A367099 nn=1000;
%t A367099 w=Table[Length[Select[Divisors[n],PrimeNu[#]==2&]],{n,nn}];
%t A367099 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
%t A367099 Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
%o A367099 (PARI) a(n) = my(k=1); while (sumdiv(k, d, omega(d)==2) != n, k++); k; \\ _Michel Marcus_, Nov 11 2023
%Y A367099 The version for all divisors is A005179 (firsts of A000005).
%Y A367099 For all prime factors (A001222) we have A220264, firsts of A086971.
%Y A367099 Positions of first appearances in A367098 (counts divisors in A007774).
%Y A367099 A000961 lists prime powers, complement A024619.
%Y A367099 A001221 counts distinct prime factors.
%Y A367099 A001358 lists semiprimes, squarefree A006881, complement A100959.
%Y A367099 A367096 lists semiprime divisors, sum A076290.
%Y A367099 Cf. A001248, A054753, A056170, A079275, A146289, A366740, A367093.
%K A367099 nonn
%O A367099 0,2
%A A367099 _Gus Wiseman_, Nov 09 2023