cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367105 Least positive integer with n more divisors than distinct subset-sums of prime indices.

This page as a plain text file.
%I A367105 #7 Nov 09 2023 08:51:09
%S A367105 1,12,24,48,60,192,144,120,180,336,240,630,420,360,900,1344,960,1008,
%T A367105 720,840,2340,1980,1260,1440,3120,2640,1680,4032,2880,6840,3600,4620,
%U A367105 3780,2520,6480,11700,8820,6300,7200,10560,6720,12240,9360,7920,5040,10920,9240
%N A367105 Least positive integer with n more divisors than distinct subset-sums of prime indices.
%C A367105 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.An integer n is a subset-sum (A299701, A304792) of a multiset y if there exists a submultiset of y with sum n.
%F A367105 A000005(a(n)) - A299701(a(n)) = n.
%e A367105 The divisors of 60 are {1,2,3,4,5,6,10,12,15,20,30,60}, and the distinct subset-sums of its prime indices {1,1,2,3} are {0,1,2,3,4,5,6,7}, so the difference is 12 - 8 = 4. Since 60 is the first number with this difference, we have a(4) = 60.
%e A367105 The terms together with their prime indices begin:
%e A367105      1: {}
%e A367105     12: {1,1,2}
%e A367105     24: {1,1,1,2}
%e A367105     48: {1,1,1,1,2}
%e A367105     60: {1,1,2,3}
%e A367105    120: {1,1,1,2,3}
%e A367105    144: {1,1,1,1,2,2}
%e A367105    180: {1,1,2,2,3}
%e A367105    192: {1,1,1,1,1,1,2}
%e A367105    240: {1,1,1,1,2,3}
%e A367105    336: {1,1,1,1,2,4}
%e A367105    360: {1,1,1,2,2,3}
%e A367105    420: {1,1,2,3,4}
%e A367105    630: {1,2,2,3,4}
%e A367105    720: {1,1,1,1,2,2,3}
%e A367105    840: {1,1,1,2,3,4}
%e A367105    900: {1,1,2,2,3,3}
%e A367105    960: {1,1,1,1,1,1,2,3}
%t A367105 nn=1000;
%t A367105 w=Table[DivisorSigma[0,n]-Length[Union[Total/@Subsets[prix[n]]]],{n,nn}];
%t A367105 spnm[y_]:=Max@@Select[Union[y],Function[i,Union[Select[y,#<=i&]]==Range[0,i]]];
%t A367105 Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
%Y A367105 The first part (divisors) is A000005.
%Y A367105 The second part (subset-sums of prime indices) is A299701, positive A304793.
%Y A367105 These are the positions of first appearances in the difference A325801.
%Y A367105 The binary version is A367093, firsts of  A086971 - A366739.
%Y A367105 A001222 counts prime factors (or prime indices), distinct A001221.
%Y A367105 A056239 adds up prime indices, row sums of A112798.
%Y A367105 Cf. A000720, A220264, A304792, A365920, A366740, A367097.
%K A367105 nonn
%O A367105 1,2
%A A367105 _Gus Wiseman_, Nov 09 2023