This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367106 #8 Nov 12 2023 21:51:26 %S A367106 1,0,1,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,2,1,1,0,0,0,1,2,1,1,0,0,0,1,3,2, %T A367106 1,1,0,0,0,0,3,3,2,1,1,0,0,0,0,4,5,3,2,1,1,0,0,0,0,3,5,5,3,2,1,1,0,0, %U A367106 0,0,4,8,7,5,3,2,1,1,0,0,0,0,2,9,9,7,5 %N A367106 Triangle read by rows where T(n,k) is the number of complete length-k integer partitions of n. %C A367106 An integer partition of n is complete (ranks A325781) if every integer from 0 to n is the sum of some submultiset of the parts. %e A367106 Triangle begins: %e A367106 1 %e A367106 0 1 %e A367106 0 0 1 %e A367106 0 0 1 1 %e A367106 0 0 0 1 1 %e A367106 0 0 0 2 1 1 %e A367106 0 0 0 1 2 1 1 %e A367106 0 0 0 1 3 2 1 1 %e A367106 0 0 0 0 3 3 2 1 1 %e A367106 0 0 0 0 4 5 3 2 1 1 %e A367106 0 0 0 0 3 5 5 3 2 1 1 %e A367106 0 0 0 0 4 8 7 5 3 2 1 1 %e A367106 0 0 0 0 2 9 9 7 5 3 2 1 1 %e A367106 0 0 0 0 2 11 12 11 7 5 3 2 1 1 %e A367106 0 0 0 0 1 11 16 13 11 7 5 3 2 1 1 %e A367106 0 0 0 0 1 14 21 19 15 11 7 5 3 2 1 1 %e A367106 Row n = 11 counts the following partitions (empty columns not shown): %e A367106 6311 62111 611111 5111111 41111111 311111111 2111111111 11111111111 %e A367106 6221 53111 521111 4211111 32111111 221111111 %e A367106 5321 52211 431111 3311111 22211111 %e A367106 4421 44111 422111 3221111 %e A367106 43211 332111 2222111 %e A367106 42221 322211 %e A367106 33311 222221 %e A367106 33221 %t A367106 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; %t A367106 Table[Length[Select[IntegerPartitions[n,{k}],nmz[#]=={}&]],{n,0,15},{k,0,n}] %Y A367106 Column k appears to have A000325(k) nonzero terms. %Y A367106 Column sums are A003513. %Y A367106 Central column T(2n,n) is A007042. %Y A367106 Row sums are A126796, ranks A325781. %Y A367106 The strict case is too sparse, row sums A188431 (complement A365831). %Y A367106 Grouping by maximum instead of length gives A261036. %Y A367106 A000041 counts integer partitions. %Y A367106 A108917 counts knapsack partitions, ranks A299702. %Y A367106 A299701 counts subset-sums of prime indices, firsts A259941. %Y A367106 A365924 counts incomplete partitions, ranks A365830. %Y A367106 Cf. A002033, A018818, A046663, A047967, A055932, A276024, A304792, A365921. %K A367106 nonn,tabl %O A367106 0,19 %A A367106 _Gus Wiseman_, Nov 09 2023