cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367108 Triangle read by rows where T(n,k) is the number of integer partitions of n with a unique submultiset summing to k.

This page as a plain text file.
%I A367108 #8 Jan 26 2024 08:40:08
%S A367108 1,1,1,2,1,2,3,2,2,3,5,3,2,3,5,7,5,4,4,5,7,11,7,6,3,6,7,11,15,11,8,7,
%T A367108 7,8,11,15,22,15,12,10,4,10,12,15,22,30,22,16,14,12,12,14,16,22,30,42,
%U A367108 30,22,17,17,6,17,17,22,30,42,56,42,30,25,23,20,20,23,25,30,42,56
%N A367108 Triangle read by rows where T(n,k) is the number of integer partitions of n with a unique submultiset summing to k.
%F A367108 A367094(n,1) = A108917(n).
%e A367108 Triangle begins:
%e A367108    1
%e A367108    1   1
%e A367108    2   1   2
%e A367108    3   2   2   3
%e A367108    5   3   2   3   5
%e A367108    7   5   4   4   5   7
%e A367108   11   7   6   3   6   7  11
%e A367108   15  11   8   7   7   8  11  15
%e A367108   22  15  12  10   4  10  12  15  22
%e A367108   30  22  16  14  12  12  14  16  22  30
%e A367108   42  30  22  17  17   6  17  17  22  30  42
%e A367108   56  42  30  25  23  20  20  23  25  30  42  56
%e A367108   77  56  40  31  30  27   7  27  30  31  40  56  77
%e A367108 Row n = 5 counts the following partitions:
%e A367108   (5)      (41)     (32)     (32)     (41)     (5)
%e A367108   (41)     (311)    (311)    (311)    (311)    (41)
%e A367108   (32)     (221)    (221)    (221)    (221)    (32)
%e A367108   (311)    (2111)   (11111)  (11111)  (2111)   (311)
%e A367108   (221)    (11111)                    (11111)  (221)
%e A367108   (2111)                                       (2111)
%e A367108   (11111)                                      (11111)
%e A367108 Row n = 6 counts the following partitions:
%e A367108   (6)       (51)      (42)      (33)      (42)      (51)      (6)
%e A367108   (51)      (411)     (411)     (2211)    (411)     (411)     (51)
%e A367108   (42)      (321)     (321)     (111111)  (321)     (321)     (42)
%e A367108   (411)     (3111)    (3111)              (3111)    (3111)    (411)
%e A367108   (33)      (2211)    (222)               (222)     (2211)    (33)
%e A367108   (321)     (21111)   (111111)            (111111)  (21111)   (321)
%e A367108   (3111)    (111111)                                (111111)  (3111)
%e A367108   (222)                                                       (222)
%e A367108   (2211)                                                      (2211)
%e A367108   (21111)                                                     (21111)
%e A367108   (111111)                                                    (111111)
%t A367108 Table[Length[Select[IntegerPartitions[n], Count[Total/@Union[Subsets[#]], k]==1&]], {n,0,10}, {k,0,n}]
%Y A367108 Columns k = 0 and k = n are A000041(n).
%Y A367108 Column k = 1 and k = n-1 are A000041(n-1).
%Y A367108 Column k = 2 appears to be 2*A027336(n).
%Y A367108 The version for non-subset-sums is A046663, strict A365663.
%Y A367108 Diagonal n = 2k is A108917, complement A366754.
%Y A367108 Row sums are A304796, non-unique version A304792.
%Y A367108 The non-unique version is A365543.
%Y A367108 Cf. A002219, A122768, A275972, A299702, A299729, A301854, A364272, A364911, A365658, A365661, A367094.
%K A367108 nonn,tabl
%O A367108 1,4
%A A367108 _Gus Wiseman_, Nov 18 2023