This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367108 #8 Jan 26 2024 08:40:08 %S A367108 1,1,1,2,1,2,3,2,2,3,5,3,2,3,5,7,5,4,4,5,7,11,7,6,3,6,7,11,15,11,8,7, %T A367108 7,8,11,15,22,15,12,10,4,10,12,15,22,30,22,16,14,12,12,14,16,22,30,42, %U A367108 30,22,17,17,6,17,17,22,30,42,56,42,30,25,23,20,20,23,25,30,42,56 %N A367108 Triangle read by rows where T(n,k) is the number of integer partitions of n with a unique submultiset summing to k. %F A367108 A367094(n,1) = A108917(n). %e A367108 Triangle begins: %e A367108 1 %e A367108 1 1 %e A367108 2 1 2 %e A367108 3 2 2 3 %e A367108 5 3 2 3 5 %e A367108 7 5 4 4 5 7 %e A367108 11 7 6 3 6 7 11 %e A367108 15 11 8 7 7 8 11 15 %e A367108 22 15 12 10 4 10 12 15 22 %e A367108 30 22 16 14 12 12 14 16 22 30 %e A367108 42 30 22 17 17 6 17 17 22 30 42 %e A367108 56 42 30 25 23 20 20 23 25 30 42 56 %e A367108 77 56 40 31 30 27 7 27 30 31 40 56 77 %e A367108 Row n = 5 counts the following partitions: %e A367108 (5) (41) (32) (32) (41) (5) %e A367108 (41) (311) (311) (311) (311) (41) %e A367108 (32) (221) (221) (221) (221) (32) %e A367108 (311) (2111) (11111) (11111) (2111) (311) %e A367108 (221) (11111) (11111) (221) %e A367108 (2111) (2111) %e A367108 (11111) (11111) %e A367108 Row n = 6 counts the following partitions: %e A367108 (6) (51) (42) (33) (42) (51) (6) %e A367108 (51) (411) (411) (2211) (411) (411) (51) %e A367108 (42) (321) (321) (111111) (321) (321) (42) %e A367108 (411) (3111) (3111) (3111) (3111) (411) %e A367108 (33) (2211) (222) (222) (2211) (33) %e A367108 (321) (21111) (111111) (111111) (21111) (321) %e A367108 (3111) (111111) (111111) (3111) %e A367108 (222) (222) %e A367108 (2211) (2211) %e A367108 (21111) (21111) %e A367108 (111111) (111111) %t A367108 Table[Length[Select[IntegerPartitions[n], Count[Total/@Union[Subsets[#]], k]==1&]], {n,0,10}, {k,0,n}] %Y A367108 Columns k = 0 and k = n are A000041(n). %Y A367108 Column k = 1 and k = n-1 are A000041(n-1). %Y A367108 Column k = 2 appears to be 2*A027336(n). %Y A367108 The version for non-subset-sums is A046663, strict A365663. %Y A367108 Diagonal n = 2k is A108917, complement A366754. %Y A367108 Row sums are A304796, non-unique version A304792. %Y A367108 The non-unique version is A365543. %Y A367108 Cf. A002219, A122768, A275972, A299702, A299729, A301854, A364272, A364911, A365658, A365661, A367094. %K A367108 nonn,tabl %O A367108 1,4 %A A367108 _Gus Wiseman_, Nov 18 2023