This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367109 #18 Dec 10 2024 13:13:34 %S A367109 2,4,13,7,33,114,11,71,321,1146,16,136,781,3449,12578,22,239,1702, %T A367109 9115,39614,146581,29,393,3403,21743,111063,477097,1784114,37,613, %U A367109 6349,47737,283243,1398211,5953639,22443232,46,916,11191,97861,667684,3754186,18060127,76372470,289721772,56,1321,18811,189377,1472692,9358669 %N A367109 Triangle of number of interval-closed sets T(m,n) in the product of two chains [m]x[n], for m <= n, read by rows. %C A367109 An interval-closed set of a poset is a subset I such that if x and y are in I with x <= z <= y, then z is in I. %C A367109 Interval-closed sets are also called convex subsets of a poset. %H A367109 Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, <a href="http://arxiv.org/abs/2307.08520">Toggling, rowmotion, and homomesy on interval-closed sets</a>, arXiv:2307.08520 [math.CO], 2023. %e A367109 The initial rows of the triangle are: %e A367109 [1] 2 %e A367109 [2] 4, 13 %e A367109 [3] 7, 33, 114 %e A367109 [4] 11, 71, 321, 1146 %e A367109 [5] 16, 136, 781, 3449, 12578 %e A367109 [6] 22, 239, 1702, 9115, 39614, 146581 %e A367109 [7] 29, 393, 3403, 21743, 111063, 477097, 1784114 %e A367109 [8] 37, 613, 6349, 47737, 283243, 1398211, 5953639, 22443232 %e A367109 [9] 46, 916, 11191, 97861, 667684, 3754186, 18060127, 76372470, 289721772 %e A367109 The T(1,1) = 2 through T(3,1) = 7 interval-closed sets: %e A367109 {} {} {} {} %e A367109 {[1,1]} {[1,1]} {[1,1]} {[1,1]} %e A367109 {[2,1]} {[1,2]} {[2,1]} %e A367109 {[1,1], [2,1]} {[2,1]} {[3,1]} %e A367109 {[2,2]} {[1,1], [2,1]} %e A367109 {[1,1], [1,2]} {[2,1], [3,1]} %e A367109 {[1,1], [2,1]} {[1,1], [2,1], [3,1]} %e A367109 {[1,2], [2,1]} %e A367109 {[1,2], [2,2]} %e A367109 {[2,1], [2,2]} %e A367109 {[1,1], [1,2], [2,1]} %e A367109 {[1,2], [2,1], [2,2]} %e A367109 {[1,1,], [1,2], [2,1], [2,2]} %o A367109 (SageMath) %o A367109 ICS_count = 0 %o A367109 x = Posets.ProductOfChains([m, n]) %o A367109 for A in x.antichains_iterator(): %o A367109 I = x.order_ideal(A) %o A367109 Q = x.subposet(set(I).difference(A)) %o A367109 ICS_count += Q.antichains().cardinality() %o A367109 ICS_count %Y A367109 Cf. A369313. %K A367109 nonn,hard,tabl %O A367109 1,1 %A A367109 _Nadia Lafreniere_, Jan 26 2024 %E A367109 Corrected by _Nadia Lafreniere_, Dec 10 2024