A367117 Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of vertices in the resulting planar graph.
3, 12, 72, 282, 795, 1818, 3612, 6492, 10827, 17040, 25608, 37062, 51987, 71022, 94860, 124248, 159987, 202932, 253992, 314130, 384363, 465762, 559452, 666612, 788475, 926328, 1081512, 1255422, 1449507, 1665270, 1904268, 2168112, 2458467, 2777052, 3125640, 3506058, 3920187, 4369962
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 5.
Crossrefs
Programs
-
Mathematica
A367117[n_]:=3/4(n+1)(3n^3+n^2+4);Array[A367117,50,0] (* Paolo Xausa, Nov 09 2023 *)
Comments