cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367118 Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of regions in the resulting planar graph.

Original entry on oeis.org

1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417, 71527, 95446, 124921, 160753, 203797, 254962, 315211, 385561, 467083, 560902, 668197, 790201, 928201, 1083538, 1257607, 1451857, 1667791, 1906966, 2170993, 2461537, 2780317, 3129106, 3509731, 3924073, 4374067
Offset: 0

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.

Crossrefs

Cf. A367117 (vertices), A367119 (edges), A091908, A092098, A331782, A367015.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023

Formula

Conjecture: a(n) = (1/4)*(9*n^4 + 12*n^3 + 15*n^2 + 12*n + 4).
a(n) = A367119(n) - A367117(n) + 1 by Euler's formula.