cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367120 Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).

This page as a plain text file.
%I A367120 #31 Nov 18 2024 03:37:55
%S A367120 2,2,2,4,4,1,2,4,3,7,9,5,6,3,4,0,4,6,7,1,6,3,8,3,7,5,4,1,3,8,4,0,2,1,
%T A367120 9,3,9,0,6,2,7,8,8,2,5,7,0,9,4,1,0,9,2,7,1,4,6,3,2,0,3,4,2,9,7,2,0,4,
%U A367120 3,2,0,9,2,7,5,4,4,6,5,4,8,9,9,9,9,9,6,1,9,3,5,4,0,9,8,2,5,3,7
%N A367120 Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).
%F A367120 Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.
%F A367120 Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).
%e A367120 2.224412437956340467163837541384021939...
%t A367120 First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)
%t A367120 First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* _Paolo Xausa_, Nov 18 2024 *)
%o A367120 (PARI)
%o A367120 N=50;
%o A367120 doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));
%o A367120 ap1 = 2 / sum(k=0,N, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
%o A367120 ap2 = 2 / sum(k=0,N+1, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
%o A367120 n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
%o A367120 A367120 = digits(floor(10^n*ap1));
%Y A367120 Cf. A113014, A113011, A194807, A365307.
%K A367120 nonn,cons
%O A367120 1,1
%A A367120 _Rok Cestnik_, Nov 13 2023