A334698 a(n) is the total number of points (both boundary and interior points) in the n-th figure shown in A255011 (meaning the figure with 4n points on the perimeter), where the interior points are counted with multiplicity.
5, 58, 375, 1376, 3685, 8130, 15743, 27760, 45621, 70970, 105655, 151728, 211445, 287266, 381855, 498080, 639013, 807930, 1008311, 1243840, 1518405, 1836098, 2201215, 2618256, 3091925, 3627130, 4228983, 4902800, 5654101, 6488610, 7412255, 8431168, 9551685, 10780346, 12123895, 13589280, 15183653, 16914370, 18788991
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for n = 2
- Scott R. Shannon, Illustration for n=3 showing interior vertices color-coded according to multiplicity.
- Scott R. Shannon, "General position" image for n = 1.
- Scott R. Shannon, "General position" image for n = 2.
- Scott R. Shannon, "General position" image for n = 3.
- Scott R. Shannon, "General position" image for n = 4.
- Scott R. Shannon, "General position" image for n = 5.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Mathematica
A334698[n_]:=n(17n^3-30n^2+19n+4)/2;Array[A334698,50] (* or *) LinearRecurrence[{5,-10,10,-5,1},{5,58,375,1376,3685},50] (* Paolo Xausa, Nov 14 2023 *)
-
PARI
Vec(x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5 + O(x^40)) \\ Colin Barker, May 31 2020
Formula
Theorem: a(n) = n*(17*n^3-30*n^2+19*n+4)/2.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Extensions
Edited by N. J. A. Sloane, Nov 13 2023
Comments