cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367126 a(n) is the degree of the polyomino with binary code A246521(n+1) in the n-omino graph defined in A098891.

This page as a plain text file.
%I A367126 #23 Dec 07 2023 14:53:37
%S A367126 0,0,1,1,4,3,4,3,2,10,9,5,9,10,9,8,9,10,9,4,2,16,28,16,14,12,12,18,15,
%T A367126 20,21,16,16,16,15,18,20,11,14,13,18,6,12,16,18,11,9,11,15,22,20,11,
%U A367126 19,14,16,3,38,36,35,33,31,32,38,25,31,38,17,14,30,14,26
%N A367126 a(n) is the degree of the polyomino with binary code A246521(n+1) in the n-omino graph defined in A098891.
%C A367126 Number of free polyominoes that can be made from the polyomino with binary code A246521(n+1) by moving one of its cells (not counting itself).
%C A367126 Can be read as an irregular triangle, whose m-th row contains A000105(m) terms, m >= 1.
%H A367126 Pontus von Brömssen, <a href="/A367126/b367126.txt">Table of n, a(n) for n = 1..6473</a> (rows 1..10).
%H A367126 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A367126 a(n) >= A367439(n).
%e A367126 As an irregular triangle:
%e A367126    0;
%e A367126    0;
%e A367126    1, 1;
%e A367126    4, 3, 4, 3,  2;
%e A367126   10, 9, 5, 9, 10, 9, 8, 9, 10, 9, 4, 2;
%e A367126   ...
%e A367126 For n = 8, A246521(8+1) = 30 is the binary code of the S-tetromino. By moving one cell of the S-tetromino, we can obtain the L, O, and T tetrominoes (but not the I tetromino), so a(8) = 3.
%Y A367126 Cf. A000105, A098891, A246521, A367123, A367124 (row maxima), A367125, A367439, A367443.
%K A367126 nonn,tabf
%O A367126 1,5
%A A367126 _Pontus von Brömssen_, Nov 05 2023