cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367131 a(n) is the sum of the divisors of A000058(n) (Sylvester's sequence).

This page as a plain text file.
%I A367131 #13 Oct 29 2024 03:57:48
%S A367131 3,4,8,44,1960,3263444,10697794573312,113429214231136770625234912,
%T A367131 12864938683281101589385656009398714729057117020127552,
%U A367131 166504803622354833425112235578181474001920862856209391632362182416351065666575351284563698791731209336320
%N A367131 a(n) is the sum of the divisors of A000058(n) (Sylvester's sequence).
%H A367131 Amiram Eldar, <a href="/A367131/b367131.txt">Table of n, a(n) for n = 0..10</a>
%H A367131 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sylvester%27s_sequence#Divisibility_and_factorizations">Sylvester's sequence: Divisibility and factorizations</a>.
%F A367131 a(n) = sigma(A000058(n)) = A000203(A000058(n)).
%t A367131 a000058[0] = 2; a000058[n_Integer?NonNegative] := a000058[n] = a000058[n - 1]^2 - a000058[n - 1] + 1; a[n_Integer?NonNegative] := a[n] = DivisorSigma[1, a000058[n]]; Table[a[n], {n, 0, 9}] (* _Robert P. P. McKone_, Nov 05 2023 *)
%o A367131 (Python)
%o A367131 from sympy import divisor_sigma
%o A367131 memo = {0: 2}
%o A367131 def a000058(n):
%o A367131     if n not in memo:
%o A367131         memo[n] = a000058(n - 1)**2 - a000058(n - 1) + 1
%o A367131     return memo[n]
%o A367131 a = lambda n: divisor_sigma(a000058(n))
%o A367131 print([a(n) for n in range(10)])
%o A367131 # _Robert P. P. McKone_, Nov 05 2023
%Y A367131 Cf. A000058, A000203, A091335, A367130.
%K A367131 nonn
%O A367131 0,1
%A A367131 _Sean A. Irvine_, Nov 05 2023