cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367137 E.g.f. satisfies A(x) = 1/(1 - log(1 + x*A(x)^3)).

This page as a plain text file.
%I A367137 #12 Nov 07 2023 11:22:53
%S A367137 1,1,7,101,2248,68024,2608940,121316796,6633841608,417181294704,
%T A367137 29665022908992,2353675598751960,206145540193974288,
%U A367137 19755830347828845360,2056381966404400741920,231034314706671715165824,27865886237401381188422400,3591366670194210901813749120
%N A367137 E.g.f. satisfies A(x) = 1/(1 - log(1 + x*A(x)^3)).
%F A367137 a(n) = (1/(3*n+1)!) * Sum_{k=0..n} (3*n+k)! * Stirling1(n,k).
%F A367137 a(n) ~ LambertW(3*exp(2))^n * n^(n-1) / (sqrt(3*(1 + LambertW(3*exp(2)))) * exp(n) * (3 - LambertW(3*exp(2)))^(4*n + 1)). - _Vaclav Kotesovec_, Nov 07 2023
%t A367137 Table[1/(3*n+1)! * Sum[(3*n+k)! * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Nov 07 2023 *)
%o A367137 (PARI) a(n) = sum(k=0, n, (3*n+k)!*stirling(n, k, 1))/(3*n+1)!;
%Y A367137 Cf. A006252, A198860, A367136.
%Y A367137 Cf. A367135, A367139.
%K A367137 nonn
%O A367137 0,3
%A A367137 _Seiichi Manyama_, Nov 06 2023