This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367146 #14 Dec 14 2023 10:11:24 %S A367146 1,8,12,24,25,56,120,152,154,200,217,376,464,568,616,1242,1368,1624, %T A367146 1736,1945,4376,4968,5176,10682,13016,14152,15560,17497,40376,42728, %U A367146 46648,94234,120664,125320,139976,157465,367544,376936,419896,840570,1100760,1119496,1259720 %N A367146 Cycle lengths obtained by repeated application of the distance-minimizing variant of the strip bijection for the square lattice described in A367150. %C A367146 See the description in the similar A363760 for more information. %H A367146 Hugo Pfoertner, <a href="/A367146/a367146.txt">Examples of starting points for all known cycle lengths</a>, December 2023. %H A367146 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/A367146_Orbits_Illustrations.pdf">Visualization of some selected orbits with lengths from L=24 to L=918330056</a>, December 2023. %e A367146 a(1) = 1: D(0,0) -> [0,0]; %e A367146 a(2) = 8: [1,0] -> [1,1] -> [0,1] -> [-1,1] -> [-1,0] -> [-1,-1] -> [0,-1] -> [1,-1] -> [1,0]; %e A367146 a(3) = 12: [2,0] -> [2,1] -> [1,2] -> [0,2] -> [-1,2] -> [-2,1] -> [-2,0] -> [-2,-1] -> [-1,-2] -> [0,-2] -> [1,-2] -> [2,-1] -> [2,0]. %e A367146 List of start points and corresponding cycle lengths: %e A367146 y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 %e A367146 x \------------------------------------------------------------------ %e A367146 0 | 1 8 12 8 8 8 8 8 8 25 8 8 8 8 8 24 8 %e A367146 1 | 8 8 12 8 8 8 8 8 8 154 8 8 8 8 8 24 8 %e A367146 2 | 12 12 8 8 8 8 8 25 25 154 154 8 8 8 8 8 24 %e A367146 3 | 8 8 8 8 8 8 25 25 8 8 154 154 154 154 8 8 8 %e A367146 4 | 8 8 8 8 8 8 8 25 8 8 154 8 8 8 154 8 8 %e A367146 5 | 8 8 8 8 8 8 8 154 154 154 154 8 8 8 154 8 152 %e A367146 6 | 8 8 8 8 8 8 8 25 8 8 154 8 8 8 154 152 8 %e A367146 7 | 8 8 25 25 25 25 154 8 8 8 8 154 154 154 8 152 8 %e A367146 8 | 8 8 25 8 8 154 8 8 8 8 8 8 8 8 8 152 8 %e A367146 9 |154 25 154 8 8 154 154 8 8 8 8 8 8 8 8 152 8 %e A367146 10 | 8 8 154 154 154 154 154 8 8 8 8 24 24 24 8 152 8 %e A367146 11 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 152 8 %e A367146 12 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 8 152 %e A367146 13 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 8 8 %e A367146 14 | 8 8 8 8 154 154 154 8 8 8 8 24 24 24 8 8 8 %e A367146 15 | 24 24 8 8 8 8 152 152 152 152 152 152 8 8 8 8 24 %e A367146 16 | 8 8 24 8 8 152 8 8 8 152 8 8 152 8 8 24 8 %o A367146 (PARI) \\ It is assumed that the PARI program from A367150 has been loaded and the functions defined there are available. %o A367146 cycle(v) = {my (n=1, w=BijectionD(v)); while (w!=v, n++; w=BijectionD(w)); n}; %o A367146 a367146(rmax=205) = {my (L=List()); for (x=0, rmax, for(y=x, rmax, my(c=cycle([x, y])); if(setsearch(L, c)==0, listput(L, c); listsort(L, 1)))); L}; %o A367146 a367146() \\ produces terms up to a(18)=1624 in about 5 minutes run time. %Y A367146 Cf. A307110, A363760, A367150, A367894. %K A367146 nonn %O A367146 1,2 %A A367146 _Hugo Pfoertner_, Nov 25 2023