cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367149 Length of cycles obtained by repeated application of the strip bijection for the triangular lattice (A367147), sorted by increasing minimum radius visited by any cycle of this length.

This page as a plain text file.
%I A367149 #10 Jan 14 2024 20:33:47
%S A367149 1,10,12,56,110,37,278,60,398,72,36,154,1114,370,2336,168,614,444,516,
%T A367149 1786,192,660,600,1128,84,156,120,2952,492,1574,961,3456,2100,10790,
%U A367149 564,2604,12110,10440,1500,3924,4882,25570,1668,16524,1164,12876,9610,9420,22906,7008,10716
%N A367149 Length of cycles obtained by repeated application of the strip bijection for the triangular lattice (A367147), sorted by increasing minimum radius visited by any cycle of this length.
%H A367149 Hugo Pfoertner, <a href="/A367149/a367149.txt">Examples of points at minimum radius</a>.
%H A367149 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a367149.pdf">Illustration of all cycles with minimum radius up to 700</a>. Zoom into the images to see details, e.g., the green line that connects every 12th point visited.
%e A367149 See the linked file with list of points at minimum radius.
%o A367149 (PARI) \\ Bijection function Q provided in A367147
%o A367149 cycle(v, upto=oo)= {my (n=1, w=Q(v)); while (w!=v, n++; if (n>upto,return(0)); w=Q(w)); n};
%o A367149 \\ upto can be used to ignore longer cycles
%o A367149 a367149(Points, upto=oo) =
%o A367149 { my (L=LL=List());
%o A367149   for (n=1, #Points,
%o A367149        my (c=cycle(Points[n],upto));
%o A367149        if (c>0 && setsearch(LL,c)==0,
%o A367149        \\ deactivate print to mute diagnostic printout
%o A367149        print ([c, Points[n], sqrt(Points[n][1]^2 + Points[n][2]^2 + Points[n][1] *Points[n][2])]);
%o A367149        listput(L,c);
%o A367149        listput(LL,c); listsort(LL,1))
%o A367149       ); L};
%o A367149 \\ Function a307014_16 provided in A307014
%o A367149 \\ Enumeration of grid points of triangular lattice by increasing radius
%o A367149 Plist = a307014_16(120,-46); \\ creates list of 52218 grid points
%o A367149 a367149(Plist) \\ all cycles having a point with R < 120 (a(1)-a(28)); takes 2 to 4 minutes
%Y A367149 A permutation of A367148.
%Y A367149 Cf. A367147.
%K A367149 nonn
%O A367149 1,2
%A A367149 _Hugo Pfoertner_, Dec 08 2023