cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367161 E.g.f. satisfies A(x) = 1 + A(x)^3 * (exp(x) - 1).

This page as a plain text file.
%I A367161 #11 Nov 10 2023 04:12:21
%S A367161 1,1,7,91,1795,47851,1612027,65731891,3148530595,173319612571,
%T A367161 10782796483147,748237171338691,57299882326956595,4800323120225595691,
%U A367161 436719009263680421467,42878536726317406241491,4519124182661042439577795,508885588456024192452993211
%N A367161 E.g.f. satisfies A(x) = 1 + A(x)^3 * (exp(x) - 1).
%F A367161 a(n) = Sum_{k=0..n} (3*k)!/(2*k+1)! * Stirling2(n,k).
%F A367161 a(n) ~ sqrt(93) * n^(n-1) / (2^(5/2) * log(31/27)^(n - 1/2) * exp(n)). - _Vaclav Kotesovec_, Nov 10 2023
%t A367161 Table[Sum[(3*k)!/(2*k+1)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Nov 10 2023 *)
%o A367161 (PARI) a(n) = sum(k=0, n, (3*k)!/(2*k+1)!*stirling(n, k, 2));
%Y A367161 Cf. A367155, A367158, A367164.
%Y A367161 Cf. A052895.
%K A367161 nonn
%O A367161 0,3
%A A367161 _Seiichi Manyama_, Nov 07 2023