cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367170 The number of divisors of the largest unitary divisor of n that is a term of A138302.

This page as a plain text file.
%I A367170 #7 Nov 10 2023 09:35:42
%S A367170 1,2,2,3,2,4,2,1,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,2,3,4,1,6,2,8,2,1,4,4,
%T A367170 4,9,2,4,4,2,2,8,2,6,6,4,2,10,3,6,4,6,2,2,4,2,4,4,2,12,2,4,6,1,4,8,2,
%U A367170 6,4,8,2,3,2,4,6,6,4,8,2,10,5,4,2,12,4,4
%N A367170 The number of divisors of the largest unitary divisor of n that is a term of A138302.
%H A367170 Amiram Eldar, <a href="/A367170/b367170.txt">Table of n, a(n) for n = 1..10000</a>
%F A367170 Multiplicative with a(p^e) = A048298(e) + 1.
%F A367170 a(n) = A000005(A367168(n)).
%F A367170 a(n) <= A000005(n), with equality if and only if n is in A138302.
%t A367170 f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A367170 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2] + 1, 1));}
%Y A367170 Cf. A000005, A048298, A138302, A367168, A367169, A367171.
%Y A367170 Similar sequences: A365401, A365402.
%K A367170 nonn,easy,mult
%O A367170 1,2
%A A367170 _Amiram Eldar_, Nov 07 2023