cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367171 The sum of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 1, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 4, 31, 42, 1, 56, 30, 72, 32, 1, 48, 54, 48, 91, 38, 60, 56, 6, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 3, 72, 8, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1), 1));}

Formula

Multiplicative with a(p^e) = (p^(A048298(e)+1)-1)/(p-1).
a(n) = A000203(A367168(n)).
a(n) <= A000203(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)/zeta(3) = 1.368432... (A306633).