This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367177 #6 Nov 07 2023 14:43:09 %S A367177 1,1,2,1,8,6,1,18,54,20,1,32,216,320,70,1,50,600,2000,1750,252,1,72, %T A367177 1350,8000,15750,9072,924,1,98,2646,24500,85750,111132,45276,3432,1, %U A367177 128,4704,62720,343000,790272,724416,219648,12870 %N A367177 Triangle read by rows, T(n, k) = [x^k] hypergeom([1/2, -n, -n], [1, 1], 4*x). %F A367177 T(n, k) = binomial(n, k)^2 * binomial(2*k, k). %e A367177 Triangle T(n, k) starts: %e A367177 [0] 1; %e A367177 [1] 1, 2; %e A367177 [2] 1, 8, 6; %e A367177 [3] 1, 18, 54, 20; %e A367177 [4] 1, 32, 216, 320, 70; %e A367177 [5] 1, 50, 600, 2000, 1750, 252; %e A367177 [6] 1, 72, 1350, 8000, 15750, 9072, 924; %e A367177 [7] 1, 98, 2646, 24500, 85750, 111132, 45276, 3432; %e A367177 [8] 1, 128, 4704, 62720, 343000, 790272, 724416, 219648, 12870; %e A367177 [9] 1, 162, 7776, 141120, 1111320, 4000752, 6519744, 4447872, 1042470, 48620; %p A367177 p := n -> hypergeom([1/2, -n, -n], [1, 1], 4*x): %p A367177 T := (n, k) -> coeff(simplify(p(n)), x, k): %p A367177 seq(seq(T(n, k), k = 0..n), n = 0..9); %Y A367177 Cf. A002893 (row sum), A002897 (central column), A000984 (main diagonal). %Y A367177 Cf. A367022, A367023, A387024. %K A367177 nonn,tabl %O A367177 0,3 %A A367177 _Peter Luschny_, Nov 07 2023