A367178 Triangle read by rows. T(n, k) = binomial(n, k)^2 * CatalanNumber(k).
1, 1, 1, 1, 4, 2, 1, 9, 18, 5, 1, 16, 72, 80, 14, 1, 25, 200, 500, 350, 42, 1, 36, 450, 2000, 3150, 1512, 132, 1, 49, 882, 6125, 17150, 18522, 6468, 429, 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430, 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 1, 1; [2] 1, 4, 2; [3] 1, 9, 18, 5; [4] 1, 16, 72, 80, 14; [5] 1, 25, 200, 500, 350, 42; [6] 1, 36, 450, 2000, 3150, 1512, 132; [7] 1, 49, 882, 6125, 17150, 18522, 6468, 429; [8] 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430; [9] 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862;
Crossrefs
Programs
-
Maple
T := (n, k) -> binomial(n, k)^2 * binomial(2*k, k) / (k + 1): seq(seq(T(n, k), k = 0..n), n = 0..9);
Formula
T(n, k) = binomial(n, k)^2 * binomial(2*k, k) / (k + 1).
T(n, k) = [x^n] hypergeom([1/2, -n, -n], [1, 2], 4*x).