A367183 Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of vertices in the resulting planar graph.
3, 12, 5, 72, 58, 10, 282, 375, 185, 19, 795, 1376, 1155, 451, 42, 1818, 3685, 4090, 2734, 938, 57, 3612, 8130, 10700, 9478, 5523, 1711, 135, 6492, 15743, 23235, 24463, 18858, 9981, 2943, 171, 10827, 27760, 44485, 52639, 48230, 33771, 16740, 4646, 341
Offset: 3
Examples
The table begins: 3, 12, 72, 282, 795, 1818, 3612, 6492, 10827, 17040, 25608, 37062, 51987,... 5, 58, 375, 1376, 3685, 8130, 15743, 27760, 45621, 70970, 105655, 151728,... 10, 185, 1155, 4090, 10700, 23235, 44485, 77780, 126990, 196525, 291335,... 19, 451, 2734, 9478, 24463, 52639, 100126, 174214, 283363, 437203, 646534,... 42, 938, 5523, 18858, 48230, 103152, 195363, 338828, 549738, 846510, 1249787,... 57, 1711, 9981, 33771, 85849, 182847, 345261, 597451, 967641, 1487919, 2194237,... 135, 2943, 16740, 56106, 141885, 301185, 567378, 980100, 1585251, 2434995,... 171, 4646, 26336, 87831, 221351, 468746, 881496, 1520711, 2457131, 3771126,... 341, 7128, 39666, 131450, 330165, 697686, 1310078, 2257596, 3644685, 5589980,... 313, 10204, 57199, 189214, 474361, 1000948, 1877479, 3232654, 5215369, 7994716,... 728, 14677, 80457, 264602, 661570, 1393743, 2611427, 4492852, 7244172,... 771, 19909, 109586, 359892, 898591, 1891121, 3540594, 6087796, 9811187,... 1380, 27030, 146565, 479370, 1194600, 2511180, 4697805, 8072940, 13004820,... 1393, 35085, 191353, 625477, 1557297, 3271213, 6116185, 10505733,...... . . .
Links
- Scott R. Shannon, Image for T(5,3).
- Scott R. Shannon, Image for T(6,2).
- Scott R. Shannon, Image for T(7,1).
- Scott R. Shannon, Image for T(8,1).
Crossrefs
Formula
T(3,k) = A367117(k) = (9/4)*k^4 + 3*k^3 + (3/4)*k^2 + 3*k + 3.
Conjectured:
T(4,k) = A334698(k+1) = (17/2)*k^4 + 19*k^3 + (31/2)*k^2 + 10*k + 5.
T(5,k) = (45/2)*k^4 + 60*k^3 + 60*k^2 + (65/2)*k + 10.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (627/4)*k^2 + 84*k + 19.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1337/4)*k^2 + 182*k + 42.
T(8,k) = 161*k^4 + 518*k^3 + 627*k^2 + 348*k + 57.
T(9,k) = 261*k^4 + 864*k^3 + (2151/2)*k^2 + (1215/2)*k + 135.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (6905/4)*k^2 + 990*k + 171.
Comments