A366253 Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of regions in the resulting planar graph.
1, 13, 4, 82, 67, 11, 307, 406, 206, 24, 841, 1441, 1216, 489, 50, 1891, 3796, 4211, 2835, 995, 80, 3718, 8299, 10901, 9672, 5671, 1802, 154, 6637, 15982, 23536, 24780, 19139, 10196, 3052, 220, 11017, 28081, 44906, 53109, 48686, 34166, 17011, 4810, 375
Offset: 3
Examples
The table begins: 1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417,... 4, 67, 406, 1441, 3796, 8299, 15982, 28081, 46036, 71491, 106294, 152497,... 11, 206, 1216, 4211, 10901, 23536, 44906, 78341, 127711, 197426, 292436,... 24, 489, 2835, 9672, 24780, 53109, 100779, 175080, 284472, 438585, 648219,... 50, 995, 5671, 19139, 48686, 103825, 196295, 340061, 551314, 848471, 1252175,... 80, 1802, 10196, 34166, 86480, 183770, 346532, 599126, 969776, 1490570,... 154, 3052, 17011, 56611, 142696, 302374, 569017, 982261, 1588006, 2438416,... 220, 4810, 26705, 88495, 222400, 470270, 883585, 1523455, 2460620, 3775450,... 375, 7305, 40096, 132243, 331431, 699535, 1312620, 2260941, 3648943, 5595261,... 444, 10509, 57810, 190263, 475980, 1003269, 1880634, 3236775, 5220588, 8001165,... 781, 14938, 81082, 265747, 663391, 1396396, 2615068, 4497637, 7250257,... 952, 20335, 110439, 361354, 900844, 1894347, 3544975, 6093514, 9818424,... 1456, 27391, 147421, 480931, 1197076, 2514781, 4702741, 8079421, 13013056,... 1696, 35716, 192552, 627484, 1560352, 3275556, 6122056, 10513372,... . . .
Links
- Scott R. Shannon, Image for T(5,3).
- Scott R. Shannon, Image for T(6,2).
- Scott R. Shannon, Image for T(8,2).
- Scott R. Shannon, Image for T(10,2).
Crossrefs
Formula
Conjectured:
T(3,k) = A367118(k) = (9/4)*k^4 + 3*k^3 + (15/4)*k^2 + 3*k + 1.
T(4,k) = A367121(k) = (17/2)*k^4 + 19*k^3 + (43/2)*k^2 + 14*k + 4.
T(5,k) = (45/2)*k^4 + 60*k^3 + 70*k^2 + (85/2)*k + 11.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (687/4)*k^2 + 102*k + 24.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1421/4)*k^2 + 210*k + 50.
T(8,k) = 161*k^4 + 518*k^3 + 655*k^2 + 388*k + 80.
T(9,k) = 261*k^4 + 864*k^3 + (2223/2)*k^2 + (1323/2)*k + 154.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (7085/4)*k^2 + 1060*k + 220.
Comments