This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367192 #14 Nov 18 2023 08:37:49 %S A367192 1,5,84,4719,884884,553361016,1153471856900,8012241391384695, %T A367192 185424118272842096128,461964068878932837522210816 %N A367192 Number of discrete implications I:L_n^2-> L_n defined on the finite chain L_n={0,1,...n}, which satisfy the left neutrality principle, i.e., I(n,y)=y for all y in L_n. %C A367192 Number of discrete implications I:L_n^2-> L_n defined on the finite chain L_n={0,1,...n} satisfying the left neutrality principle, i.e., the number of binary functions I:L_n^2->L_n such that I is decreasing in the first argument, increasing in the second argument, I(0,0)=I(n,n)=n and I(n,0)=0 (discrete implication), and I(n,y)=y for all y in L_n (left neutrality principle). %C A367192 The proposed formula is recursive and implemented using dynamic programming using Python. and only the first 10 terms could be obtained. See github link. %H A367192 Marc Munar, <a href="https://github.com/mmunar97/discrete-fuzzy-operators/blob/master/discrete_fuzzy_operators/counters/conjunctions/discrete_neutrality_principle_conjunctions_counter.py">Python program</a>. %H A367192 Marc Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728. %H A367192 Marc Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://zenodo.org/doi/10.5281/zenodo.5031268">DiscreteFuzzyOperators - A Python library for computing with fuzzy operators</a>, Zenodo, Version 1.13. %F A367192 a(n)=G((1,2,...,n)), where G(v) is defined recursively as: %F A367192 ·G(v)=det(A(v))-Sum_{x in V_n(v)\v} G(v), where: %F A367192 · A(v)_{i,j}=binomial(n+v_j, n-i+j). %F A367192 · V_n(v) is the set of decreasing vectors x of n components, whose entries are taken from L_n, and x_i<=v_i for all i in {1,...,n}. %F A367192 ·G(v)=Binomial(n+x-1,x), if v=(x,0,...,0), with v being a vector of n components and 1<=x<=n. %o A367192 (Python) See Github link %Y A367192 Particular case of the enumeration of discrete implications in general, enumerated in A360612. %K A367192 nonn,hard,more %O A367192 1,2 %A A367192 _Marc Munar_, Nov 09 2023