A367208 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.
1, 1, 3, 2, 5, 8, 3, 13, 19, 21, 5, 25, 59, 65, 55, 8, 50, 137, 231, 210, 144, 13, 94, 316, 623, 834, 654, 377, 21, 175, 677, 1615, 2545, 2859, 1985, 987, 34, 319, 1411, 3859, 7285, 9691, 9451, 5911, 2584, 55, 575, 2849, 8855, 19115, 30245, 35105, 30407, 17345, 6765
Offset: 1
Examples
First ten rows: 1 1 3 2 5 8 3 13 19 21 5 25 59 65 55 8 50 137 231 210 144 13 94 316 623 834 654 377 21 175 677 1615 2545 2859 1985 987 34 319 1411 3859 7285 9691 9451 5911 2584 55 575 2849 8855 19115 30245 35105 30407 17345 6765 Row 4 represents the polynomial p(4,x) = 3 + 13*x + 19*x^2 + 21*x^3, so (T(4,k)) = (3,13,19,21), k=0..3.
Links
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Crossrefs
Programs
-
Mathematica
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2; p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Formula
p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = (1/2)*(1 + 3*x - D), c = (1/2)*(1 + 3*x + D), where D = sqrt(5 + 2*x + 5*x^2).
Comments