This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367209 #13 Mar 28 2025 04:08:49 %S A367209 1,1,4,2,7,15,3,18,38,56,5,35,116,186,209,8,70,273,650,859,780,13,132, %T A367209 629,1777,3366,3821,2911,21,246,1352,4600,10410,16556,16556,10864,34, %U A367209 449,2820,11024,29770,56874,78504,70356,40545,55,810,5701,25306,78324 %N A367209 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2. %C A367209 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A367209 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14. %F A367209 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 4*x, u = p(2,x), and v = 1 - x - x^2. %F A367209 p(n,x) = k*(b^n - c^n), where k = -(1/D), b = (1/2)*(1 + 4*x - D), c = (1/2)*(1 + 4*x + D), where D = sqrt(5 + 4*x + 12*x^2). %e A367209 First nine rows: %e A367209 1 %e A367209 1 4 %e A367209 2 7 15 %e A367209 3 18 38 56 %e A367209 5 35 116 186 209 %e A367209 8 70 273 650 859 780 %e A367209 13 132 629 1777 3366 3821 2911 %e A367209 21 246 1352 4600 10410 16556 16556 10864 %e A367209 34 449 2820 11024 29770 56874 78504 70356 405459 %e A367209 Row 4 represents the polynomial p(4,x) = 3 + 18*x + 38*x^2 + 56*x^3, so (T(4,k)) = (3,18,38,56), k=0..3. %t A367209 p[1, x_] := 1; p[2, x_] := 1 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2; %t A367209 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] %t A367209 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %t A367209 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %Y A367209 Cf. A000045 (column 1), A001353 (T(n,n-1)), A004254 (row sums, p(n,1)), A006190 (alternating row sums, p(n,-1)), A094440, A367208, A367210, A367211, A367297, A367298, A367299, A367300. %K A367209 nonn,tabl %O A367209 1,3 %A A367209 _Clark Kimberling_, Nov 13 2023