A367210 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 5x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 1 - x - x^2.
1, 1, 5, 2, 9, 24, 3, 23, 63, 115, 5, 45, 191, 397, 551, 8, 90, 453, 1381, 2358, 2640, 13, 170, 1044, 3807, 9226, 13482, 12649, 21, 317, 2249, 9865, 28785, 58513, 75061, 60605, 34, 579, 4695, 23703, 82485, 202887, 357567, 409779, 290376, 55, 1045, 9501
Offset: 1
Examples
First eight rows: 1 1 5 2 9 24 3 23 63 115 5 45 191 397 551 8 90 453 1381 2358 2640 13 170 1044 3807 9226 13482 12649 21 317 2249 9865 28785 58513 75061 60605 Row 4 represents the polynomial p(4,x) = 3 + 23 x + 63 x^2 + 115 x^3, so that (T(4,k)) = (3,23,63,115), k-0..3.
Links
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Crossrefs
Programs
-
Mathematica
p[1, x_] := 1; p[2, x_] := 1 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2; p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Formula
p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where p(1,x) = 1, p(2,x) = 1 + 5x, u = p(2,x), and v = 1 - x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/D), b = 1/2 (1 + 5 x - D), c = 1/2 (1 + 5 x + D), where D = sqrt(5 + 6 x + 21 x^2).
Comments