cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367212 Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2023

Keywords

Comments

Or, partitions whose length is a subset-sum of the parts.

Examples

			The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)       (62)
             (111)  (211)   (221)    (321)     (322)      (332)
                    (1111)  (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]