This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367213 #19 Dec 30 2023 17:01:59 %S A367213 0,0,1,1,2,2,5,4,7,8,12,13,19,21,29,33,45,49,67,73,97,108,139,152,196, %T A367213 217,274,303,379,420,523,579,709,786,960,1061,1285,1423,1714,1885, %U A367213 2265,2498,2966,3280,3881,4268,5049,5548,6507,7170,8391,9194,10744,11778,13677 %N A367213 Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset. %C A367213 These partitions are necessarily incomplete (A365924). %C A367213 Are there any decreases after the initial terms? %H A367213 Chai Wah Wu, <a href="/A367213/b367213.txt">Table of n, a(n) for n = 0..65</a> %e A367213 The a(3) = 1 through a(9) = 8 partitions: %e A367213 (3) (4) (5) (6) (7) (8) (9) %e A367213 (3,1) (4,1) (3,3) (4,3) (4,4) (5,4) %e A367213 (5,1) (6,1) (5,3) (6,3) %e A367213 (2,2,2) (5,1,1) (7,1) (8,1) %e A367213 (4,1,1) (4,2,2) (4,4,1) %e A367213 (6,1,1) (5,2,2) %e A367213 (5,1,1,1) (7,1,1) %e A367213 (6,1,1,1) %t A367213 Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}] %Y A367213 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367213 sum-full sum-free comb-full comb-free %Y A367213 ------------------------------------------- %Y A367213 partitions: A367212 A367213* A367218 A367219 %Y A367213 strict: A367214 A367215 A367220 A367221 %Y A367213 subsets: A367216 A367217 A367222 A367223 %Y A367213 ranks: A367224 A367225 A367226 A367227 %Y A367213 A000041 counts partitions, strict A000009. %Y A367213 A002865 counts partitions whose length is a part, complement A229816. %Y A367213 A007865/A085489/A151897 count certain types of sum-free subsets. %Y A367213 A108917 counts knapsack partitions, non-knapsack A366754. %Y A367213 A126796 counts complete partitions, incomplete A365924. %Y A367213 A237667 counts sum-free partitions, sum-full A237668. %Y A367213 A304792 counts subset-sums of partitions, strict A365925. %Y A367213 Triangles: %Y A367213 A008284 counts partitions by length, strict A008289. %Y A367213 A046663 counts partitions of n without a subset-sum k, strict A365663. %Y A367213 A365543 counts partitions of n with a subset-sum k, strict A365661. %Y A367213 A365658 counts partitions by number of subset-sums, strict A365832. %Y A367213 Cf. A000700, A124506, A238628, A240861, A364349, A364531, A365045, A365381, A365918, A366320. %K A367213 nonn %O A367213 0,5 %A A367213 _Gus Wiseman_, Nov 12 2023 %E A367213 a(41)-a(54) from _Chai Wah Wu_, Nov 13 2023