This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367214 #8 Nov 13 2023 08:46:33 %S A367214 1,1,0,1,0,1,2,2,3,4,5,5,7,8,10,12,14,17,21,25,30,36,43,51,60,71,83, %T A367214 97,113,132,153,178,205,238,272,315,360,413,471,539,613,698,792,899, %U A367214 1018,1153,1302,1470,1658,1867,2100,2362,2652,2974,3335,3734,4178,4672 %N A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset. %C A367214 These partitions have Heinz numbers A367224 /\ A005117. %e A367214 The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16). %e A367214 The a(1) = 1 through a(10) = 5 strict partitions: %e A367214 (1) . (2,1) . (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) %e A367214 (3,2,1) (4,2,1) (4,3,1) (4,3,2) (5,3,2) %e A367214 (5,2,1) (5,3,1) (6,3,1) %e A367214 (6,2,1) (7,2,1) %e A367214 (4,3,2,1) %t A367214 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}] %Y A367214 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367214 sum-full sum-free comb-full comb-free %Y A367214 ------------------------------------------- %Y A367214 partitions: A367212 A367213 A367218 A367219 %Y A367214 strict: A367214* A367215 A367220 A367221 %Y A367214 subsets: A367216 A367217 A367222 A367223 %Y A367214 ranks: A367224 A367225 A367226 A367227 %Y A367214 A000041 counts integer partitions, strict A000009. %Y A367214 A088809/A093971/A364534 count certain types of sum-full subsets. %Y A367214 A188431 counts complete strict partitions, incomplete A365831. %Y A367214 A240855 counts strict partitions whose length is a part, complement A240861. %Y A367214 A275972 counts strict knapsack partitions, non-strict A108917. %Y A367214 A364272 counts sum-full strict partitions, sum-free A364349. %Y A367214 A365925 counts subset-sums of strict partitions, non-strict A304792. %Y A367214 Triangles: %Y A367214 A008289 counts strict partitions by length, non-strict A008284. %Y A367214 A365661 counts strict partitions with a subset-sum k, non-strict A365543. %Y A367214 A365832 counts strict partitions by subset-sums, non-strict A365658. %Y A367214 Cf. A002865, A126796, A237113, A237668, A238628, A363225, A364346, A364350, A364533, A365311, A365922. %K A367214 nonn %O A367214 0,7 %A A367214 _Gus Wiseman_, Nov 12 2023