A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.
0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0
Keywords
Examples
The a(2) = 1 through a(11) = 7 strict partitions: (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (3,1) (4,1) (5,1) (4,3) (5,3) (5,4) (6,4) (6,5) (6,1) (7,1) (6,3) (7,3) (7,4) (8,1) (9,1) (8,3) (5,4,1) (10,1) (5,4,2) (6,4,1) The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15): 2 3 4 5 6 7 8 9 A B C D E F 31 41 51 43 53 54 64 65 75 76 86 87 61 71 63 73 74 84 85 95 96 81 91 83 93 94 A4 A5 541 A1 B1 A3 B3 B4 542 642 C1 D1 C3 641 651 652 752 E1 741 742 761 654 751 842 762 841 851 852 941 861 6521 942 951 A41 7521
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..118
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
Comments