This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367216 #18 Feb 25 2025 13:13:23 %S A367216 1,2,3,5,10,20,40,82,169,348,716,1471,3016,6171,12605,25710,52370, %T A367216 106539,216470,439310,890550,1803415,3648557,7375141,14896184, %U A367216 30065129,60639954,122231740,246239551,495790161,997747182,2006969629,4035274292,8110185100,16293958314,32724456982 %N A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset. %F A367216 a(n) = 2^n - A367217(n). - _Chai Wah Wu_, Nov 14 2023 %e A367216 The a(0) = 1 through a(4) = 10 subsets: %e A367216 {} {} {} {} {} %e A367216 {1} {1} {1} {1} %e A367216 {1,2} {1,2} {1,2} %e A367216 {2,3} {2,3} %e A367216 {1,2,3} {2,4} %e A367216 {1,2,3} %e A367216 {1,2,4} %e A367216 {1,3,4} %e A367216 {2,3,4} %e A367216 {1,2,3,4} %t A367216 Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}] %Y A367216 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367216 sum-full sum-free comb-full comb-free %Y A367216 ------------------------------------------- %Y A367216 partitions: A367212 A367213 A367218 A367219 %Y A367216 strict: A367214 A367215 A367220 A367221 %Y A367216 subsets: A367216* A367217 A367222 A367223 %Y A367216 ranks: A367224 A367225 A367226 A367227 %Y A367216 A000009 counts subsets summing to n. %Y A367216 A000124 counts distinct possible sums of subsets of {1..n}. %Y A367216 A002865 counts partitions whose length is a part, complement A229816. %Y A367216 A007865/A085489/A151897 count certain types of sum-free subsets. %Y A367216 A088809/A093971/A364534 count certain types of sum-full subsets. %Y A367216 A237668 counts sum-full partitions, ranks A364532. %Y A367216 A240855 counts strict partitions whose length is a part, complement A240861. %Y A367216 A364272 counts sum-full strict partitions, sum-free A364349. %Y A367216 A365046 counts combination-full subsets, differences of A364914. %Y A367216 Triangles: %Y A367216 A365381 counts sets with a subset summing to k, without A366320. %Y A367216 A365541 counts sets containing two distinct elements summing to k. %Y A367216 Cf. A068911, A095944, A103580, A288728, A326080, A326083, A365376, A365544. %K A367216 nonn %O A367216 0,2 %A A367216 _Gus Wiseman_, Nov 12 2023 %E A367216 a(16)-a(28) from _Chai Wah Wu_, Nov 14 2023 %E A367216 a(29)-a(35) from _Max Alekseyev_, Feb 25 2025