This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367217 #16 Feb 25 2025 14:34:45 %S A367217 0,0,1,3,6,12,24,46,87,164,308,577,1080,2021,3779,7058,13166,24533, %T A367217 45674,84978,158026,293737,545747,1013467,1881032,3489303,6468910, %U A367217 11985988,22195905,41080751,75994642,140514019,259693004,479749492,885910870,1635281386 %N A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset. %F A367217 a(n) = 2^n - A367216(n). - _Chai Wah Wu_, Nov 14 2023 %e A367217 The a(2) = 1 through a(5) = 12 subsets: %e A367217 {2} {2} {2} {2} %e A367217 {3} {3} {3} %e A367217 {1,3} {4} {4} %e A367217 {1,3} {5} %e A367217 {1,4} {1,3} %e A367217 {3,4} {1,4} %e A367217 {1,5} %e A367217 {3,4} %e A367217 {3,5} %e A367217 {4,5} %e A367217 {1,4,5} %e A367217 {2,4,5} %t A367217 Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}] %Y A367217 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367217 sum-full sum-free comb-full comb-free %Y A367217 ------------------------------------------- %Y A367217 partitions: A367212 A367213 A367218 A367219 %Y A367217 strict: A367214 A367215 A367220 A367221 %Y A367217 subsets: A367216 A367217* A367222 A367223 %Y A367217 ranks: A367224 A367225 A367226 A367227 %Y A367217 A000009 counts subsets summing to n. %Y A367217 A000124 counts distinct possible sums of subsets of {1..n}. %Y A367217 A229816 counts partitions whose length is not a part, complement A002865. %Y A367217 A007865/A085489/A151897 count certain types of sum-free subsets. %Y A367217 A088809/A093971/A364534 count certain types of sum-full subsets. %Y A367217 A124506 appears to count combination-free subsets, differences of A326083. %Y A367217 A237667 counts sum-free partitions, ranks A364531. %Y A367217 Triangles: %Y A367217 A046663 counts partitions of n without a subset-sum k, strict A365663. %Y A367217 A365381 counts sets with a subset summing to k, without A366320. %Y A367217 A365541 counts sets containing two distinct elements summing to k. %Y A367217 Cf. A068911, A103580, A240861, A288728, A326080, A326083, A364346, A364349, A365046, A365376, A365377. %K A367217 nonn %O A367217 0,4 %A A367217 _Gus Wiseman_, Nov 12 2023 %E A367217 a(16)-a(28) from _Chai Wah Wu_, Nov 14 2023 %E A367217 a(29)-a(35) from _Max Alekseyev_, Feb 25 2025