This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367218 #17 Dec 30 2023 17:00:35 %S A367218 1,1,1,2,4,6,8,13,18,26,35,50,66,92,119,160,208,275,350,457,579,742, %T A367218 933,1185,1476,1859,2300,2868,3531,4371,5343,6575,8003,9776,11842, %U A367218 14394,17351,20987,25191,30315,36257,43448,51753,61776,73342,87192,103184,122253,144211 %N A367218 Number of integer partitions of n whose length can be written as a nonnegative linear combination of the distinct parts. %C A367218 The Heinz numbers of these partitions are given by A367226. %e A367218 The partition (4,2,1) has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(7). %e A367218 The a(1) = 1 through a(7) = 13 partitions: %e A367218 (1) (11) (21) (22) (32) (42) (52) %e A367218 (111) (31) (41) (51) (61) %e A367218 (211) (221) (321) (322) %e A367218 (1111) (311) (411) (331) %e A367218 (2111) (2211) (421) %e A367218 (11111) (3111) (511) %e A367218 (21111) (2221) %e A367218 (111111) (3211) %e A367218 (4111) %e A367218 (22111) %e A367218 (31111) %e A367218 (211111) %e A367218 (1111111) %t A367218 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A367218 Table[Length[Select[IntegerPartitions[n], combs[Length[#], Union[#]]!={}&]], {n,0,15}] %Y A367218 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367218 sum-full sum-free comb-full comb-free %Y A367218 ------------------------------------------- %Y A367218 partitions: A367212 A367213 A367218* A367219 %Y A367218 strict: A367214 A367215 A367220 A367221 %Y A367218 subsets: A367216 A367217 A367222 A367223 %Y A367218 ranks: A367224 A367225 A367226 A367227 %Y A367218 A000041 counts integer partitions, strict A000009. %Y A367218 A002865 counts partitions whose length is a part, complement A229816. %Y A367218 A008284 counts partitions by length, strict A008289. %Y A367218 A240855 counts strict partitions whose length is a part, complement A240861. %Y A367218 A365046 counts combination-full subsets, differences of A364914. %Y A367218 Cf. A088314, A363225, A364350, A365073, A365311, A365918. %K A367218 nonn %O A367218 0,4 %A A367218 _Gus Wiseman_, Nov 14 2023 %E A367218 a(31)-a(48) from _Chai Wah Wu_, Nov 15 2023