This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367219 #15 Dec 30 2023 17:00:43 %S A367219 0,0,1,1,1,1,3,2,4,4,7,6,11,9,16,16,23,22,35,33,48,50,69,70,99,99,136, %T A367219 142,187,194,261,267,346,367,468,489,626,650,824,870,1081,1135,1421, %U A367219 1485,1833,1942,2374,2501,3062,3220,3915,4145,4987,5274,6363,6709,8027 %N A367219 Number of integer partitions of n whose length cannot be written as a nonnegative linear combination of the distinct parts. %e A367219 3 cannot be written as a nonnegative linear combination of 2 and 5, so (5,2,2) is counted under a(9). %e A367219 The a(2) = 1 through a(10) = 7 partitions: %e A367219 (2) (3) (4) (5) (6) (7) (8) (9) (10) %e A367219 (3,3) (4,3) (4,4) (5,4) (5,5) %e A367219 (2,2,2) (5,3) (6,3) (6,4) %e A367219 (4,2,2) (5,2,2) (7,3) %e A367219 (4,4,2) %e A367219 (6,2,2) %e A367219 (2,2,2,2,2) %t A367219 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A367219 Table[Length[Select[IntegerPartitions[n],combs[Length[#],Union[#]]=={}&]],{n,0,15}] %Y A367219 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367219 sum-full sum-free comb-full comb-free %Y A367219 ------------------------------------------- %Y A367219 partitions: A367212 A367213 A367218 A367219* %Y A367219 strict: A367214 A367215 A367220 A367221 %Y A367219 subsets: A367216 A367217 A367222 A367223 %Y A367219 ranks: A367224 A367225 A367226 A367227 %Y A367219 A000041 counts integer partitions, strict A000009. %Y A367219 A002865 counts partitions whose length is a part, complement A229816. %Y A367219 A008284 counts partitions by length, strict A008289. %Y A367219 A124506 appears to count combination-free subsets, differences of A326083. %Y A367219 A365046 counts combination-full subsets, differences of A364914. %Y A367219 Cf. A068911, A088314, A116861, A364345, A364350, A365073, A365312, A365380. %K A367219 nonn %O A367219 0,7 %A A367219 _Gus Wiseman_, Nov 14 2023 %E A367219 a(31)-a(56) from _Chai Wah Wu_, Nov 15 2023