This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367220 #6 Nov 15 2023 08:23:08 %S A367220 1,1,0,1,1,2,3,3,4,5,7,7,10,11,15,17,22,25,32,37,46,53,65,75,90,105, %T A367220 124,143,168,193,224,258,297,340,390,446,509,580,660,751,852,967,1095, %U A367220 1240,1401,1584,1786,2015,2269,2554,2869,3226,3617,4056,4541,5084 %N A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts. %C A367220 The non-strict version is A367218. %e A367220 The a(3) = 1 through a(10) = 7 strict partitions: %e A367220 (2,1) (3,1) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) %e A367220 (4,1) (5,1) (6,1) (7,1) (8,1) (9,1) %e A367220 (3,2,1) (4,2,1) (4,3,1) (4,3,2) (5,3,2) %e A367220 (5,2,1) (5,3,1) (5,4,1) %e A367220 (6,2,1) (6,3,1) %e A367220 (7,2,1) %e A367220 (4,3,2,1) %t A367220 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A367220 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}] %Y A367220 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367220 sum-full sum-free comb-full comb-free %Y A367220 ------------------------------------------- %Y A367220 partitions: A367212 A367213 A367218 A367219 %Y A367220 strict: A367214 A367215 A367220* A367221 %Y A367220 subsets: A367216 A367217 A367222 A367223 %Y A367220 ranks: A367224 A367225 A367226 A367227 %Y A367220 A000041 counts integer partitions, strict A000009. %Y A367220 A002865 counts partitions whose length is a part, complement A229816. %Y A367220 A188431 counts complete strict partitions, incomplete A365831. %Y A367220 A240855 counts strict partitions whose length is a part, complement A240861. %Y A367220 A364272 counts sum-full strict partitions, sum-free A364349. %Y A367220 A365046 counts combination-full subsets, differences of A364914. %Y A367220 Cf. A008289, A088314, A116861, A124506, A363225, A364346, A364350, A364916, A365073, A365311, A365312. %K A367220 nonn %O A367220 0,6 %A A367220 _Gus Wiseman_, Nov 14 2023