A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.
0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0
Keywords
Examples
The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16): 2 3 4 5 6 7 8 9 A B C D E F G 43 53 54 64 65 75 76 86 87 97 63 73 74 84 85 95 96 A6 83 93 94 A4 A5 B5 542 642 A3 B3 B4 C4 652 752 C3 D3 742 842 654 754 762 862 852 952 942 A42
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
A365541 counts subsets containing two distinct elements summing to k.
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]
Comments