This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367223 #23 Feb 25 2025 14:55:52 %S A367223 0,0,1,2,4,8,15,27,49,90,165,301,548,998,1819,3316,6040,10986,19959, %T A367223 36253,65904,119986,218796,399461,729752,1333162,2434411,4441954, %U A367223 8097478,14746715,26830230,48773790,88605927,160900978,292140427,530487359,963610200,1751171679,3183997509 %N A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements. %F A367223 a(n) = 2^n - A367222(n). %e A367223 3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6). %e A367223 The a(2) = 1 through a(6) = 15 subsets: %e A367223 {2} {2} {2} {2} {2} %e A367223 {3} {3} {3} {3} %e A367223 {4} {4} {4} %e A367223 {3,4} {5} {5} %e A367223 {3,4} {6} %e A367223 {3,5} {3,4} %e A367223 {4,5} {3,5} %e A367223 {2,4,5} {3,6} %e A367223 {4,5} %e A367223 {4,6} %e A367223 {5,6} %e A367223 {2,4,5} %e A367223 {2,4,6} %e A367223 {2,5,6} %e A367223 {4,5,6} %t A367223 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A367223 Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}] %o A367223 (Python) %o A367223 from itertools import combinations %o A367223 from sympy.utilities.iterables import partitions %o A367223 def A367223(n): %o A367223 c, mlist = 0, [] %o A367223 for m in range(1,n+1): %o A367223 t = set() %o A367223 for p in partitions(m): %o A367223 t.add(tuple(sorted(p.keys()))) %o A367223 mlist.append([set(d) for d in t]) %o A367223 for k in range(1,n+1): %o A367223 for w in combinations(range(1,n+1),k): %o A367223 ws = set(w) %o A367223 for s in mlist[k-1]: %o A367223 if s <= ws: %o A367223 break %o A367223 else: %o A367223 c += 1 %o A367223 return c # _Chai Wah Wu_, Nov 16 2023 %Y A367223 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367223 sum-full sum-free comb-full comb-free %Y A367223 ------------------------------------------- %Y A367223 partitions: A367212 A367213 A367218 A367219 %Y A367223 strict: A367214 A367215 A367220 A367221 %Y A367223 subsets: A367216 A367217 A367222 A367223* %Y A367223 ranks: A367224 A367225 A367226 A367227 %Y A367223 A007865/A085489/A151897 count certain types of sum-free subsets. %Y A367223 A088809/A093971/A364534 count certain types of sum-full subsets. %Y A367223 A124506 appears to count combination-free subsets, differences of A326083. %Y A367223 A365046 counts combination-full subsets, differences of A364914. %Y A367223 Triangles: %Y A367223 A116861 counts positive linear combinations of strict partitions of k. %Y A367223 A364916 counts linear combinations of strict partitions of k. %Y A367223 A366320 counts subsets without a subset summing to k, with A365381. %Y A367223 Cf. A068911, A088314, A103580, A237667, A326020, A326080, A364350, A365073, A365312, A365377, A365380. %K A367223 nonn %O A367223 0,4 %A A367223 _Gus Wiseman_, Nov 14 2023 %E A367223 a(14)-a(33) from _Chai Wah Wu_, Nov 15 2023 %E A367223 a(34)-a(38) from _Max Alekseyev_, Feb 25 2025