This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367224 #8 Nov 15 2023 08:22:53 %S A367224 1,2,4,6,8,9,12,15,16,18,20,21,24,30,32,33,36,39,40,42,45,48,50,51,54, %T A367224 56,57,60,64,66,69,70,72,75,78,80,81,84,87,90,93,96,100,102,105,108, %U A367224 110,111,112,114,120,123,125,126,128,129,130,132,135,138,140,141 %N A367224 Numbers m with a divisor whose prime indices sum to bigomega(m). %C A367224 Also numbers m whose prime indices have a submultiset summing to bigomega(m). %C A367224 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367224 These are the Heinz numbers of the partitions counted by A367212. %e A367224 The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is in the sequence. %e A367224 The terms together with their prime indices begin: %e A367224 1: {} %e A367224 2: {1} %e A367224 4: {1,1} %e A367224 6: {1,2} %e A367224 8: {1,1,1} %e A367224 9: {2,2} %e A367224 12: {1,1,2} %e A367224 15: {2,3} %e A367224 16: {1,1,1,1} %e A367224 18: {1,2,2} %e A367224 20: {1,1,3} %e A367224 21: {2,4} %e A367224 24: {1,1,1,2} %e A367224 30: {1,2,3} %e A367224 32: {1,1,1,1,1} %t A367224 prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]]; %t A367224 Select[Range[100], MemberQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&] %Y A367224 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367224 sum-full sum-free comb-full comb-free %Y A367224 ------------------------------------------- %Y A367224 partitions: A367212 A367213 A367218 A367219 %Y A367224 strict: A367214 A367215 A367220 A367221 %Y A367224 subsets: A367216 A367217 A367222 A367223 %Y A367224 ranks: A367224* A367225 A367226 A367227 %Y A367224 A000700 counts self-conjugate partitions, ranks A088902. %Y A367224 A002865 counts partitions whose length is a part, ranks A325761. %Y A367224 A005117 ranks strict integer partitions, counted by A000009. %Y A367224 A066208 ranks partitions into odd parts, also counted by A000009. %Y A367224 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A367224 A126796 counts complete partitions, ranks A325781. %Y A367224 A229816 counts partitions whose length is not a part, ranks A367107. %Y A367224 A237668 counts sum-full partitions, ranks A364532. %Y A367224 Triangles: %Y A367224 A046663 counts partitions of n without a subset-sum k, strict A365663. %Y A367224 A365543 counts partitions of n with a subset-sum k, strict A365661. %Y A367224 A365658 counts partitions by number of subset-sums, strict A365832. %Y A367224 Cf. A000720, A055396, A061395, A106529, A299729, A304792, A363225, A365830. %K A367224 nonn %O A367224 1,2 %A A367224 _Gus Wiseman_, Nov 14 2023