cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367225 Numbers m without a divisor whose prime indices sum to bigomega(m).

This page as a plain text file.
%I A367225 #5 Nov 15 2023 08:10:30
%S A367225 3,5,7,10,11,13,14,17,19,22,23,25,26,27,28,29,31,34,35,37,38,41,43,44,
%T A367225 46,47,49,52,53,55,58,59,61,62,63,65,67,68,71,73,74,76,77,79,82,83,85,
%U A367225 86,88,89,91,92,94,95,97,98,99,101,103,104,106,107,109,113
%N A367225 Numbers m without a divisor whose prime indices sum to bigomega(m).
%C A367225 Also numbers m whose prime indices do not have a submultiset summing to bigomega(m).
%C A367225 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A367225 These are the Heinz numbers of the partitions counted by A367213.
%e A367225 The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is not in the sequence.
%e A367225 The terms together with their prime indices begin:
%e A367225      3: {2}        29: {10}       58: {1,10}
%e A367225      5: {3}        31: {11}       59: {17}
%e A367225      7: {4}        34: {1,7}      61: {18}
%e A367225     10: {1,3}      35: {3,4}      62: {1,11}
%e A367225     11: {5}        37: {12}       63: {2,2,4}
%e A367225     13: {6}        38: {1,8}      65: {3,6}
%e A367225     14: {1,4}      41: {13}       67: {19}
%e A367225     17: {7}        43: {14}       68: {1,1,7}
%e A367225     19: {8}        44: {1,1,5}    71: {20}
%e A367225     22: {1,5}      46: {1,9}      73: {21}
%e A367225     23: {9}        47: {15}       74: {1,12}
%e A367225     25: {3,3}      49: {4,4}      76: {1,1,8}
%e A367225     26: {1,6}      52: {1,1,6}    77: {4,5}
%e A367225     27: {2,2,2}    53: {16}       79: {22}
%e A367225     28: {1,1,4}    55: {3,5}      82: {1,13}
%t A367225 prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A367225 Select[Range[100], FreeQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]
%Y A367225 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
%Y A367225                sum-full   sum-free   comb-full  comb-free
%Y A367225               -------------------------------------------
%Y A367225   partitions:  A367212    A367213    A367218    A367219
%Y A367225   strict:      A367214    A367215    A367220    A367221
%Y A367225   subsets:     A367216    A367217    A367222    A367223
%Y A367225   ranks:       A367224    A367225*   A367226    A367227
%Y A367225 A000700 counts self-conjugate partitions, ranks A088902.
%Y A367225 A108917 counts knapsack partitions, ranks A299702, strict A275972.
%Y A367225 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A367225 A229816 counts partitions whose length is not a part, ranks A367107.
%Y A367225 A237667 counts sum-free partitions, ranks A364531.
%Y A367225 A365924 counts incomplete partitions, ranks A365830.
%Y A367225 Triangles:
%Y A367225 A046663 counts partitions of n without a subset-sum k, strict A365663.
%Y A367225 A365543 counts partitions of n with a subset-sum k, strict A365661.
%Y A367225 A365658 counts partitions by number of subset-sums, strict A365832.
%Y A367225 Cf. A000720, A055396, A061395, A106529, A288728, A304792, A325761, A325781, A364345, A364347.
%K A367225 nonn
%O A367225 1,1
%A A367225 _Gus Wiseman_, Nov 15 2023