This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367226 #7 Nov 15 2023 08:06:38 %S A367226 1,2,4,6,8,9,10,12,14,15,16,18,20,21,22,24,26,28,30,32,33,34,36,38,39, %T A367226 40,42,44,45,46,48,50,51,52,54,56,57,58,60,62,64,66,68,69,70,72,74,75, %U A367226 76,78,80,81,82,84,86,87,88,90,92,93,94,96,98,100,102,104 %N A367226 Numbers m whose prime indices have a nonnegative linear combination equal to bigomega(m). %C A367226 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367226 These are the Heinz numbers of the partitions counted by A367218. %e A367226 The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is in the sequence. %e A367226 The terms together with their prime indices begin: %e A367226 1: {} %e A367226 2: {1} %e A367226 4: {1,1} %e A367226 6: {1,2} %e A367226 8: {1,1,1} %e A367226 9: {2,2} %e A367226 10: {1,3} %e A367226 12: {1,1,2} %e A367226 14: {1,4} %e A367226 15: {2,3} %e A367226 16: {1,1,1,1} %e A367226 18: {1,2,2} %e A367226 20: {1,1,3} %e A367226 21: {2,4} %e A367226 22: {1,5} %e A367226 24: {1,1,1,2} %e A367226 26: {1,6} %e A367226 28: {1,1,4} %e A367226 30: {1,2,3} %e A367226 32: {1,1,1,1,1} %t A367226 prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A367226 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A367226 Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]!={}&] %Y A367226 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred. %Y A367226 sum-full sum-free comb-full comb-free %Y A367226 ------------------------------------------- %Y A367226 partitions: A367212 A367213 A367218 A367219 %Y A367226 strict: A367214 A367215 A367220 A367221 %Y A367226 subsets: A367216 A367217 A367222 A367223 %Y A367226 ranks: A367224 A367225 A367226* A367227 %Y A367226 A000700 counts self-conjugate partitions, ranks A088902. %Y A367226 A002865 counts partitions whose length is a part, ranks A325761. %Y A367226 A005117 ranks strict partitions, counted by A000009. %Y A367226 A046663 counts partitions of n without a subset-sum k, strict A365663. %Y A367226 A066208 ranks partitions into odd parts, counted by A000009. %Y A367226 A088809/A093971/A364534 count certain types of sum-full subsets. %Y A367226 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A367226 A126796 counts complete partitions, ranks A325781. %Y A367226 A237668 counts sum-full partitions, ranks A364532. %Y A367226 A365046 counts combination-full subsets, differences of A364914. %Y A367226 Cf. A000720, A088314, A106529, A116861, A237113, A238628, A299702, A364347, A365073, A367107. %K A367226 nonn %O A367226 1,2 %A A367226 _Gus Wiseman_, Nov 15 2023