A367228 Products of two consecutive Fermat numbers: a(n) = A000215(n) * A000215(n+1).
15, 85, 4369, 16843009, 281479271743489, 79228162532711081671548469249, 6277101735386680764176071790128604879584176795969512275969
Offset: 0
References
- Michal Krížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers, Springer-Verlag, N.Y., 2001, p. 142.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10
- Andrzej Rotkiewicz, On pseudoprimes having special forms and a solution of K. Szymiczek's problem, Acta Mathematica Universitatis Ostraviensis, Vol. 13, No. 1 (2005), pp. 57-71.
- Kazimierz Szymiczek, Note on Fermat numbers, Elemente der Mathematik, Vol. 21, No. 3 (1966), p. 59.
Programs
-
Mathematica
f[n_] := 2^(2^n) + 1; a[n_] := f[n] * f[n + 1]; Array[a, 7, 0]
-
PARI
f(n) = 2^(2^n) + 1; a(n) = f(n) * f(n+1);
Formula
a(n) = (2^(2^n) + 1) * (2^(2^(n+1)) + 1).
Comments