cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367233 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^3.

This page as a plain text file.
%I A367233 #13 Dec 01 2024 09:24:39
%S A367233 1,1,6,39,284,2223,18267,155445,1358073,12111306,109802183,1009001571,
%T A367233 9376972698,87978198364,832223905371,7928413841673,76002832317437,
%U A367233 732578811761670,7095717550127526,69029297500888522,674181392461483212,6607910786529613248
%N A367233 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^3.
%H A367233 Seiichi Manyama, <a href="/A367233/b367233.txt">Table of n, a(n) for n = 0..983</a>
%F A367233 If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
%o A367233 (PARI) a(n, s=3, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
%Y A367233 Cf. A161797, A365113, A365150.
%Y A367233 Cf. A108447, A367232, A367235.
%K A367233 nonn
%O A367233 0,3
%A A367233 _Seiichi Manyama_, Nov 11 2023