cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367235 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^4.

This page as a plain text file.
%I A367235 #13 Dec 01 2024 09:24:35
%S A367235 1,1,7,50,399,3422,30798,286974,2744947,26798010,265945022,2674970684,
%T A367235 27209385886,279412999031,2892787737002,30161921520976,
%U A367235 316440334960563,3338105334701396,35385133077851602,376732207920371784,4026682585718602014
%N A367235 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^4.
%H A367235 Seiichi Manyama, <a href="/A367235/b367235.txt">Table of n, a(n) for n = 0..946</a>
%F A367235 If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
%o A367235 (PARI) a(n, s=4, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
%Y A367235 Cf. A321798, A365114, A367234.
%Y A367235 Cf. A108447, A367232, A367233.
%K A367235 nonn
%O A367235 0,3
%A A367235 _Seiichi Manyama_, Nov 11 2023