cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367236 G.f. satisfies A(x) = 1 + x / (1 - x*A(x)^2)^2.

This page as a plain text file.
%I A367236 #8 Nov 11 2023 08:45:26
%S A367236 1,1,2,7,26,107,462,2074,9572,45147,216638,1054254,5190710,25810064,
%T A367236 129423512,653740518,3323270096,16988894131,87283137130,450434292624,
%U A367236 2333851816654,12136369892776,63318984098996,331347363084737,1738713937163124,9146850725274636
%N A367236 G.f. satisfies A(x) = 1 + x / (1 - x*A(x)^2)^2.
%F A367236 If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
%o A367236 (PARI) a(n, s=2, t=0, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
%Y A367236 Cf. A001764, A367237, A367238.
%Y A367236 Cf. A161634.
%K A367236 nonn
%O A367236 0,3
%A A367236 _Seiichi Manyama_, Nov 11 2023