cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367238 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^2)^2.

This page as a plain text file.
%I A367238 #8 Nov 11 2023 08:45:17
%S A367238 1,1,5,31,219,1672,13439,112043,960017,8402085,74791408,675033956,
%T A367238 6163120105,56820187321,528231686315,4946304326883,46609889424547,
%U A367238 441664236745594,4205848369345681,40228631544942031,386317524696654392,3723196299965400616
%N A367238 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^2)^2.
%F A367238 If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
%o A367238 (PARI) a(n, s=2, t=3, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
%Y A367238 Cf. A001764, A367236, A367237.
%K A367238 nonn
%O A367238 0,3
%A A367238 _Seiichi Manyama_, Nov 11 2023